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Abstract. Weighted quantile correlation tests are worked out for the
Gumbel location and location-scale families. Our theoretical emphasis is
on the determination of computable forms of the asymptotic distributions
under the null hypotheses, which forms are based on the solution of an as-
sociated eigenvalue-eigenfunction problem. Suitable transformations then
yield corresponding composite goodness-of-fit tests for the Weibull family
with unknown shape and scale parameters and for the Pareto family with
an unknown shape parameter. Simulations demonstrate slow convergence
under the null hypotheses, and hence the inadequacy of the asymptotic crit-
ical points. Other rounds of extensive simulations illustrate the power of all
three tests: Gumbel against the other extreme-value distributions, Weibull
against gamma distributions, and Pareto against generalized Pareto distribu-
tions with logarithmic slow variation.
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1. INTRODUCTION

Gumbel distributions are at the heart of extreme value theory, and in many
applied situations there is a need to test for them. The problem is old, as seen
through [17], and for the study of various test procedures we refer to [12], [14],
[15], [17], to the more recent article [1], and the references in all these papers; in
particular, Marohn [15] discusses the Gumbel testing literature divided into three
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and carried out within the Analysis and Stochastics Research Group of the Hungarian Academy of
Sciences.
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classes. The main goal of the present paper is to introduce what may be called
weighted quantile correlation tests for the location and the location-scale Gumbel
families, and to make these tests, by suitable transformations, applicable also to
Weibull and Pareto families.

Quantile correlation test statistics for goodness of fit to location and scale fam-
ilies, minimizing an empirical L2-Wasserstein distance, were introduced in [7] and
[6]. In these papers special attention was paid to the particularly important test for
normality, the strong power properties of which – demonstrated in extensive simu-
lation studies – are reported in [13]. In general, the limitations of quantile correla-
tion tests in their demand of very light underlying tails were delineated in [2], and
a remedial involvement of a weight function was proposed in [3] and [4]. Weight
functions were independently suggested by de Wet [9], [10] with a different moti-
vation, namely to achieve a desirable asymptotic loss of degree of freedom. Written
at about the same time and competing with [4], minimal regularity conditions for
asymptotic distributions under the null hypothesis are achieved in [8].

In general, for a known univariate distribution function G(x) = P{X ¬ x},
let Gθ,σ(x) = G

(
(x − θ)/σ

)
, x ∈ R, where R is the real line, and consider the

location-scale family Gl-s = {Gθ,σ : θ ∈ R, σ > 0} and the location family Gl =
{Gθ,1 : θ ∈ R} generated by G. Denote by QG(t),

QG(t) = G−1(t) = inf{x ∈ R : G(x) ­ t}, 0 < t < 1,

the quantile function pertaining to G, so that QGθ,σ(t) = θ + σQG(t) for all t ∈
(0, 1), and for an integrable weight function w : (0, 1)→ [0,∞) satisfying

1∫
0

w(t) dt = 1

suppose that the generalized second moment

0 < µ2(G, w) =
1∫
0

Q2
G(t)w(t) dt =

∞∫
−∞

x2w
(
G(x)

)
dG(x) <∞,

so that the corresponding first moment

µ1(G,w) =
1∫
0

QG(t)w(t) dt =
∞∫
−∞

x w
(
G(x)

)
dG(x)

is also finite. Moreover, assume that the weighted variance v(G,w) = µ2(G,w)−
µ2

1(G,w) > 0. Let X1, X2, . . . , Xn be a sample of size n, independent random
variables on a probability space (Ω,A,P) with common distribution function F ,
with pertaining order statistics X1,n ¬ X2,n ¬ . . . ¬ Xn,n, and let Qn(·) = QFn(·)
be the sample quantile function corresponding to the sample distribution function
Fn(·) for which Qn(t) = Xk,n if (k − 1)/n < t ¬ k/n, k = 1, 2, . . . , n. Then the
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location-scale invariant weighted quantile correlation statistic for the goodness-of-
fit hypothesis F ∈ Gl-s is

Vn = 1−
[ ∫ 1

0
Qn(t)QG(t)w(t) dt− µ1(G,w)

∫ 1

0
Qn(t)w(t) dt

]2

v(G, w)
[ ∫ 1

0
Q2

n(t)w(t) dt− ( ∫ 1

0
Qn(t)w(t) dt

)2]

= 1−

[ n∑

k=1

Xk,n

{ k/n∫
(k−1)/n

QG(t)w(t) dt− µ1(G,w)
k/n∫

(k−1)/n

w(t) dt
}]2

v(G, w)
[ n∑

k=1

X2
k,n

k/n∫
(k−1)/n

w(t) dt− ( n∑

k=1

Xk,n

k/n∫
(k−1)/n

w(t) dt
)2]

,

while the location-invariant statistic for the hypothesis F ∈ Gl is

Wn =
1∫
0

{Qn(t)−QG(t)}2w(t) dt− [ 1∫
0

{Qn(t)−QG(t)}w(t) dt
]2

= v(G,w) +
n∑

k=1

X2
k,n

k/n∫
(k−1)/n

w(t) dt− [ n∑

k=1

Xk,n

k/n∫
(k−1)/n

w(t) dt
]2

− 2
n∑

k=1

Xk,n

{ k/n∫
(k−1)/n

QG(t)w(t) dt− µ1(G,w)
k/n∫

(k−1)/n

w(t) dt
}
,

as derived in [4]. Under suitable regularity conditions on G, the asymptotic dis-
tributions of Vn and Wn are obtained in terms of quadratic integral functionals
of a Brownian bridge B(·) in [4] and [8], where {B(t) : 0 ¬ t ¬ 1} is a sam-
ple continuous Gaussian process with mean zero and covariance E(B(s)B(t)

)
=

min(s, t)− st, s, t ∈ [0, 1], for which B(0) = 0 = B(1) almost surely.
In the next section we derive these asymptotic distributions for the Gumbel

families Gl-s and Gl for a special choice of the weight function and represent these
distributions in computable forms. In Section 3 the asymptotic distribution func-
tions are computed and the speed in the limit theorems under the null hypotheses
is investigated by simulation as well as the power of the location-scale test under
the other extreme value distributions as alternatives. In Section 4 we transform the
results to the Weibull family on [0,∞) and investigate the power against gamma
distributions. Finally, in Section 5 we do the same for the Pareto family on [1,∞),
for which the power is looked at against the presence of logarithmic nuisance func-
tions.

2. TESTS FOR GUMBEL FAMILIES

Setting G(x) = e−e−x
with density g(x) = G′(x) = e−xe−e−x

, x ∈ R, the
collection Gl-s becomes the location-scale Gumbel family, while Gl becomes the
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location Gumbel family of extreme value distributions. Here the quantile function
is Q(t) = QG(t) = − log log t−1, so that the density-quantile function is g

(
Q(t)

)
= t log t−1, 0 < t < 1, where log = loge stands for the natural logarithm.

The crucial point is to choose the weight function w. The basic well-motivated
idea of de Wet [9], [10] is the choice that makes the underlying implicit estimation
of the location and scale parameters asymptotically efficient, which, as he proves
separately for the two cases in [10], will then result in what he calls an asymptotic
loss of a degree of freedom; see below for the appearance of the latter phenomenon.
As de Wet points out in [10], in general this cannot be done with a single w jointly
for both parameters. The constant weight function 1 achieves joint efficiency for
the normal distribution and for no other distribution, as proved in [6], and presum-
ably no weight function can do this for any other distribution. Hence for a given
location-scale family, as for the present Gumbel family Gl-s, the expedient choice
of one of de Wet’s optimal weight functions, either for scale or for location, appears
reasonable. De Wet’s [10] weight function for the scale case is h′s

(
Q(t)

)
/
(
cQ(t)

)
,

0 < t < 1, where hs(x) = −xg′(x)/g(x), x ∈ R, and c =
∫ 1

0
h′s

(
Q(t)

)
Q(t) dt.

This function is so prohibitively complicated that we did not check for it the valid-
ity of a possible counterpart of the corresponding first statements of Theorems 2.1
and 2.2 below, exactly because there seemed to be no hope for a counterpart of the
second, distributional statements.

On the other hand, de Wet’s [10] weight function w(·) for the location case is
given by

w(t) = hl

(
Q(t)

)
/C, 0 < t < 1,

where hl(x) =
[(

g′(x)
)2 − g′(x)g(x)

]
/g2(x), x ∈ R, and C =

∫ 1

0
hl

(
Q(t)

)
dt.

Elementary calculation yields the remarkable simplification hl(x) = e−x, x ∈ R,
so that w(t) = log t−1 = − log t, 0 < t < 1. This w(·) is optimal in de Wet’s sense
for the Gumbel location class Gl, and this is also our pragmatic choice of the weight
function for the Gumbel location-scale class Gl-s.

We have of course
∫ 1

0
w(t) dt = −

∫ 1

0
log t dt = 1, and

µ1 = µ1(G,w) = −
1∫
0

(
log log

1
t

)
log

1
t

dt

= −
∞∫
0

y(log y)e−y dy = −Γ′(2) = γ − 1,

µ2 = µ2(G, w) =
1∫
0

(
log log

1
t

)2

log
1
t

dt = −Γ′′(2) = γ2 − 2γ +
π2

6
,

where Γ(u) =
∫∞

0
xu−1e−x dx, u > 0, is the usual gamma function and γ =

−Γ′(1) = 0.577215664 . . . is Euler’s constant, so that v = v(G,w) = µ2 − µ2
1 =
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(π2 − 6)/6. The two statistics introduced above take the concrete forms

Vn =

= 1−
6
[ n∑

k=1

Xk,n

{ k/n∫
(k−1)/t

(− log log t−1) log t−1 dt− (γ − 1)
k/n∫

(k−1)/t

log t−1 dt
}]2

(π2 − 6)
[ n∑

k=1

X2
k,n

k/n∫
(k−1)/t

log t−1 dt− ( n∑

k=1

Xk,n

k/n∫
(k−1)/t

log t−1 dt
)2]

and

Wn =
π2 − 6

6
+

n∑

k=1

X2
k,n

k/n∫
(k−1)/t

log
1
t

dt

−
[ n∑

k=1

Xk,n

k/n∫
(k−1)/t

log
1
t

dt

]2

− 2
n∑

k=1

Xk,n

{ k/n∫
(k−1)/t

(
− log log

1
t

)
log

1
t

dt− (γ − 1)
k/n∫

(k−1)/t

log
1
t

dt

}
.

Denoting by D−→ convergence in distribution and understanding all asymptotic re-
lations as n→∞ unless otherwise specified, the main asymptotic results are con-
tained in the following two theorems.

THEOREM 2.1. If F ∈ Gl-s, then

(2.1) V ?
n = nVn − c?

n
D−→ V,

where

c?
n =

∫ n/(n+1)

1/(n+1)

[
t(1− t)/g2

(
QG(t)

)]
w(t) dt

∫ n/(n+1)

1/(n+1)
Q2

G(t)w(t) dt− [ ∫ n/(n+1)

1/(n+1)
QG(t)w(t) dt

]2

(2.2)

=

∫ n/(n+1)

1/(n+1)
[(1− t)/(t log t−1)]dt

∫ n/(n+1)

1/(n+1)
(log log t−1)2 log t−1 dt− [ ∫ n/(n+1)

1/(n+1)
(− log log t−1) log t−1 dt

]2

=
6

π2 − 6
log log n +

6γ

π2 − 6
+ o(1)
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and

V =
1

v(G,w)

{ 1∫
0

B2(t)− t(1− t)
g2

(
QG(t)

) w(t) dt−
[ 1∫

0

B(t)
g
(
QG(t)

) w(t) dt

]2}

−
[

1
v(G,w)

1∫
0

B(t)QG(t)
g
(
QG(t)

) w(t) dt− µ1(G,w)
v(G,w)

1∫
0

B(t)
g
(
QG(t)

) w(t) dt

]2

=
6

π2 − 6

{ 1∫
0

B2(t)− t(1− t)
t2 log t−1

dt−
[ 1∫

0

B(t)
t

dt

]2}

−
[

6
π2 − 6

1∫
0

B(t)(− log log t−1)
t

dt− 6(γ − 1)
π2 − 6

1∫
0

B(t)
t

dt

]2

,

in which the integrals are meaningful in the space L2(Ω,A,P). Furthermore, the
equality in distribution

(2.3) V
D=

6
π2 − 6

(
− 1 +

∞∑

k=2

Z2
k − 1
k

)
− 36

(π2 − 6)2

( ∞∑

k=2

Zk

(k − 1)k

)2

holds, where Z1, Z2, Z3, . . . are independent standard normal random variables.

THEOREM 2.2. If F ∈ Gl, then

(2.4) W �
n = nWn − c�n

D−→ W,

where

(2.5)

c�n =
n/(n+1)∫
1/(n+1)

t(1− t)
g2

(
QG(t)

) w(t) dt =
n/(n+1)∫
1/(n+1)

1− t

t log t−1
dt = log log n + γ + o(1)

and

W =
1∫
0

B2(t)− t(1− t)
g2

(
QG(t)

) w(t) dt−
[ 1∫

0

B(t)
g
(
QG(t)

) w(t) dt

]2

=
1∫
0

B2(t)− t(1− t)
t2 log t−1

dt−
[ 1∫

0

B(t)
t

dt

]2

.

Furthermore,

(2.6) W
D= − 1 +

∞∑

k=2

Z2
k − 1
k

,

where Z1, Z2, Z3, . . . are as in Theorem 2.1.
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The loss of a degree of freedom is the phenomenon seen in (2.6) and in the
first term of (2.3), which results from the representation

W
D=
∞∑

k=1

(Z2
k − 1)k−1 − Z2

1 ,

so that Z2
1 cancels, and essentially the same phenomenon occurs jointly in the sec-

ond term of V yielding the full formula in (2.3). We emphasize that while the re-
sults of de Wet [10] predict this to happen, they do not guarantee the distributional
representations in (2.3) and (2.6). Such representations should be individually ob-
tained, if possible at all, for each problem of this sort through the determination of
the eigenvalues and eigenfunctions of an L2(0, 1) Hilbert–Schmidt integral opera-
tor associated with the covariance of the stochastic process

{
B(t)

√
w(t)/g

(
QG(t)

)
: 0 < t < 1

}
.

P r o o f o f T h e o r e m s 2.1 a n d 2.2. In order to prove (2.1) and (2.4),
we check the conditions of the respective parts (ii) of Theorems 3 and 2 in [4].
Since for

A(t) :=
t(1− t)

∣∣g′(Q(t)
)∣∣

g2
(
Q(t)

) = (1− t)
∣∣∣∣1 +

1
log t

∣∣∣∣
we have limt↓0 A(t) = 1 = limt↑1 A(t), and hence sup0<t<1 A(t) <∞, condition
(1) in [4] is trivially satisfied.

It is indeed part (ii) in both theorems that may work because

1∫
0

t(1− t)
g2

(
Q(t)

) w(t) dt =
1∫
0

t− 1
t log t

dt =
∞∫
0

1− e−y

y
dy ­

∞∫
log 2

1
2y

dy =∞,

that is, condition (2) in [4], for parts (i) of the theorems there, is violated. But, for
condition (3) there, writing logu x = (log x)u for x, u > 0, we have

I :=
1∫
0

1∫
0

[min(s, t)− st]2

g2
(
Q(s)

)
g2

(
Q(t)

) w(s)w(t) ds dt =
1∫
0

1∫
0

[min(s, t)− st]2

s2t2(log s)(log t)
ds dt

= 2
{ 1∫

0

[∞∫
y

(1− e−y)2

e−yxy
e−x dx

]
dy +

∞∫
1

[∞∫
y

(1− e−y)2

e−yxy
e−x dx

]
dy

}

=: 2
{
I1 + I2

}
,

and, since limy↓0(1− e−y)2/y2 = 1 and limy↓0 y log y = 0, we see that

I1 ¬ e
1∫
0

(1− e−y)2

y

[∞∫
y

e−x

x
dx

]
dy ¬ e

1∫
0

(1− e−y)2

y

[ 1∫
y

1
x

dx +
∞∫
1

e−x dx

]
dy

=
1∫
0

(1− e−y)2

y
(1− e log y)dy =

1∫
0

(1− e−y)2

y2
(y − e y log y)dy <∞,
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and

I2 ¬
∞∫
1

(1− e−y)2

e−yy

[∞∫
y

e−x

y
dx

]
dy =

∞∫
1

(1− e−y)2

y2
dy ¬

∞∫
1

1
y2

dy = 1.

Thus I <∞, validating condition (3) in [4].
We now consider condition (8) in [4], which is sufficient for both (4a) and (5a)

there. It suffices to show that Cn(δ)→ 0 for any fixed δ ∈ (1/2, 1), where

Cn(δ) =
1

n1−δ

n/(n+1)∫
1/(n+1)

[t(1− t)]δ

g2
(
Q(t)

) w(t) dt =
1

n1−δ

n/(n+1)∫
1/(n+1)

[t(1− t)]δ

t2 log t−1
dt

=
1

n1−δ

log(n+1)∫
log[(n+1)/n]

[e−x(1− e−x)]δ

xe−x
dx

=
1

n1−δ

1∫
log[(n+1)/n]

ex(1−δ)(1− e−x)δ

x
dx +

1
n1−δ

log(n+1)∫
1

ex(1−δ)(1− e−x)δ

x
dx

=: Cδ,1
n + Cδ,2

n .

Since 1− e−x < x for x > 0, we have

Cδ,1
n =

1
n1−δ

1∫
log[(n+1)/n]

ex(1−δ)

x1−δ

(
1− e−x

x

)δ

dx ¬ e

n1−δ

1∫
0

1
x1−δ

dx =
e

δn1−δ

→ 0
and

Cδ,2
n ¬ 1

n1−δ

log(n+1)∫
1

ex(1−δ)

x
dx

=
1

n1−δ

log log n∫
1

ex(1−δ)

x
dx +

1
n1−δ

log(n+1)∫
log log n

ex(1−δ)

x
dx

¬ 1
n1−δ

log log n∫
1

ex(1−δ) dx +
1

n1−δ

log(n+1)∫
log log n

ex(1−δ)

log log n
dx

=
1

n1−δ

[
ex(1−δ)

1− δ

]log log n

x=1

+
1

n1−δ

[
ex(1−δ)

(1− δ) log log n

]log(n+1)

x=log log n

¬ 1
n1−δ

(log n)1−δ

1− δ
+

1
n1−δ

(n + 1)1−δ

(1− δ) log log n
→ 0,

so that Cn(δ)→ 0 indeed.
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Next, aiming finally at conditions (6) and (7) in [4], let Y1,n ¬ . . . ¬ Yn,n be
the order statistics of a sample Y1, . . . , Yn from the generating Gumbel distribution
given by G(x) = P{Y ¬ x} = exp(−e−x), x ∈ R. What we have to show is that

D1,n := n
1/(n+1)∫

0

[Y1,n −Q(t)]2dt

= n
1/(n+1)∫

0

[
Y1,n + log log

1
t

]2

log
1
t

dt
P−→ 0

(2.7)

and

Dn,n := n
1∫

n/(n+1)

[Yn,n −Q(t)]2dt

= n
1∫

n/(n+1)

[
Yn,n + log log

1
t

]2

log
1
t

dt
P−→ 0,

(2.8)

where P−→ denotes convergence in probability.
As to (2.7), first note the elementary fact that

log n [Y1,n + log log n] D−→ − Y,

so that
Ln := Y1,n + log log n = OP(1/ log n).

Thus, introduce the function fn(t) = log log(1/t)− log log n and notice that

D1,n ¬ n
1/n∫
0

[
Y1,n + log log n + log log

1
t
− log log n

]2

log
1
t

dt

= L2
n(1 + log n) + 2Ln n

1/n∫
0

fn(t) log
1
t

dt + n
1/n∫
0

f2
n(t) log

1
t

dt,

where for the coefficient of 2Ln we have

d1,1
n := n

1/n∫
0

fn(t) log
1
t

dt = n
∞∫

log n

x(log x)e−x dx− (log log n)(1 + log n)

= n
∞∫

log n

(1 + log x)e−x dx− log log n = 1 + n
∞∫

log n

(log x)e−x dx− log log n

= 1 + n
∞∫

log n

e−x

x
dx ¬ 1 +

n

log n

∞∫
log n

e−x dx = 1 +
1

log n
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and for the full third term d1,2
n := n

∫ 1/n

0
f2

n(t) log t−1 dt we have

d1,2
n = n

∞∫
log n

x(log x)2e−x dx + (log log n)2(1 + log n)

− 2n(log log n)
∞∫

log n

x(log x)e−x dx

= (log log n)2(log n) + n
∞∫

log n

(log2 x + 2 log x)e−x dx

+ (log log n)2(1 + log n)

− 2(log log n)
[
(log log n)(1 + log n) + 1 + n

∞∫
log n

e−x

x
dx

]

= n
∞∫

log n

2 + 2 log x

x
e−x dx− 2n(log log n)

∞∫
log n

e−x

x
dx

=
2

log n
− 2n

∞∫
log n

log x

x2
e−x dx + 2n(log log n)

∞∫
log n

e−x

x2
dx

¬ 2
log n

+ 2n
log log n

log2 n

∞∫
log n

e−x dx =
2

log n
+ 2

log log n

log2 n
.

Consequently, we see that (2.7) holds true.
Finally, since the distributional equality Yn,n − log n

D= Y holds for every
n ∈ N, for the proof of (2.8) we notice that Mn := Yn,n − log n = OP(1). Con-
siderations similar to those above imply

Dn,n = n
1∫

n/(n+1)

[
Yn,n − log n + log n + log log

1
t

]2

log
1
t

dt

= d2,1
n M2

n + 2d2,2
n Mn + d2,3

n ,

where

d2,1
n = n

1∫
n/(n+1)

log
1
t

dt

=
n + n2 log

(
n/(n + 1)

)

n + 1
=

n + n2 log
(
1− 1/(n + 1)

)

n + 1
→ 0,

d2,2
n = n

log[(n+1)/n]∫
0

[log n + log x]x e−x dx

¬ 2n(log n)
log[(n+1)/n]∫

0

x dx +
2n2

n + 1

log[(n+1)/n]∫
0

x log x dx

¬ n(log n)
[
log

n + 1
n

]2
+

n2

n + 1

[
log

n + 1
n

]2[
log log

n + 1
n

]
→ 0
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and

d2,3
n = n

log[(n+1)/n]∫
0

[log n + log x]2x e−x dx ¬ n
log[(n+1)/n]∫

0

[log n + log x]2x dx

=
n

2

[
log

n + 1
n

]2[
log n + log log

n + 1
n

]2

− n
log[(n+1)/n]∫

0

[log n + log x]x dx→ 0,

ensuring (2.8).
Theorems 3 and 2 in [4] now imply the basic convergence statements in (2.1)

and (2.4) with the given definition of the ingredients. Also, integrating by parts,

n/(n+1)∫
1/(n+1)

t− 1
t log t

dt =
log(n+1)∫

log[(n+1)/n]

1− e−y

y
dy =

n

n + 1
log log(n + 1)

− 1
n + 1

log log
n + 1

n
−

log(n+1)∫
log[(n+1)/n]

(log y) e−y dy

= log log n− Γ′(1) + o(1),

which, since the denominator in (2.2) converges to v = µ2 − µ2
1 = (π2 − 6)/6,

proves both asymptotic formulae in (2.2) and (2.5).
Now we turn to the distributional equations in (2.3) and (2.6). The condition

that I < ∞ at the beginning of the proof ensures that the integrals in V and W
exist as limits in L2(Ω,A,P) above the probability space (Ω,A,P) where B(·) is
defined. It is also the necessary and sufficient condition ([16], Sections 66, 97, 98)
that the Hilbert–Schmidt covariance operator T : L2(0, 1) → L2(0, 1) associated
with the Gaussian process

(2.9) Z(t) =
B(t)

√
w(t)

g
(
Q(t)

) =
B(t)

t
√

log t−1
, 0 < t < 1,

given by

Th(t) =
1∫
0

Cov
(
Z(s), Z(t)

)
h(s) ds =

1∫
0

min(s, t)− st

st
√

(log s)(log t)
h(s) ds, 0 < t < 1,

has a countable number of different eigenvalues λk with pertaining eigenfunctions
hk, so that Thk(t) = λkhk(t), 0 < t < 1; here k runs through a countable set to
be fixed later on. Our first goal is the joint determination of λk and hk(·).

We know from de Wet’s [10] Theorem 2.4 that
√

w(·) =
√
− log(·) is an

eigenfunction; this is what motivated the choice of w(·) in the first place. This fact
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partially motivates our trick to search for the eigenfunctions in the form of hk(·) =
fk

( − log(·))
√
− log(·), where, for each k, fk(·) is twice continuously differen-

tiable on (0,∞) such that beyond hk ∈ L2(0, 1) we also have
∫∞

0
|fk(x)| e−xdx <

∞ and, in particular, limx→∞ fk(x)e−x = 0 and limx↓0 fk(x)x = 0.
With f(·) standing for any of the fk(·), our integral equation to solve is

λ f

(
log

1
t

)√
log

1
t

=
1∫
0

min(s, t)− st

st
√

(log s)(log t)
f

(
log

1
s

)√
log

1
s

ds, 0 < t < 1,

where λ is the corresponding eigenvalue or, what is the same for every t ∈ (0, 1),

λ f

(
log

1
t

)
t log

1
t

=
1∫
0

min(s, t)− st

s
f

(
log

1
s

)
ds

= (1− t)
t∫
0

f

(
log

1
s

)
ds + t

1∫
t

1− s

s
f

(
log

1
s

)
ds.

After substituting t = e−x and then s = e−y in the integrals, this takes the form

λxe−xf(x) = (1− e−x)
∞∫
x

e−yf(y) dy + e−x
x∫
0

(1− e−y)f(y) dy, x > 0.

Differentiating and then dividing by e−x, we obtain

λxf ′(x) + λ(1− x)f(x) =
∞∫
x

e−yf(y) dy −
x∫
0

(1− e−y)f(y) dy, x > 0.

Differentiating once more, we get

λxf ′′(x) + λ(2− x)f ′(x)− λf(x) = −f(x), x > 0,

that is,

(2.10) xf ′′(x) + (2− x)f ′(x) +
(

1
λ
− 1

)
f(x) = 0, x > 0.

In this differential equation we recognize the one ([18], p. 100) which characterizes
the classical Laguerre polynomials

Lk(x) =
k∑

j=0

(
k + 1
k − j

)
(−x)j

j!
, x ­ 0,

defined by

(2.11)
∞∫
0

Ln(x)Lm(x)xe−x dx = (n + 1)δnm, n, m = 0, 1, 2, . . . ,
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where δnm is Kronecker’s symbol: the equation has Lk(·) as the unique polynomial
solution if and only if

1
λk
− 1 = k, that is, λk =

1
k + 1

for all k = 0, 1, 2, . . . ,

and, of course, the regularity conditions imposed on fk(·) are satisfied by Lk(·).
We also note that one can also work backwards from (2.10) and see, under the
regularity conditions on fk(·) above, that this differential equation is in fact equiv-
alent to Tf(− log t)

√− log t = λf(− log t)
√− log t, 0 < t < 1, the eigenvalue

problem.
If we now introduce the normalized eigenfunctions

h∗k(t) =
1√

k + 1
Lk

(
log

1
t

)√
log

1
t
, 0 < t < 1, k = 0, 1, 2, . . . ,

then we can easily see that (2.11) is equivalent to the ordinary orthogonality re-
lation

∫ 1

0
h∗n(t)h∗m(t) dt = δnm, n, m = 0, 1, 2, . . . Then the zero-mean jointly

normal random variables

Zk+1 =
√

k + 1
1∫
0

Z(t)h∗k(t) dt, k = 0, 1, 2, . . . ,

for all k, m = 0, 1, 2, . . . have the covariance

E(Zk+1Zm+1) =
1∫
0

1∫
0

[min(s, t)− st]h∗k(s)h
∗
m(t)

st
√

(log s)(log t)
ds dt

=
√

k + 1
√

m + 1
k + 1

1∫
0

h∗k(t)h
∗
m(t) dt = δkm,

and hence are independent standard normal variables. In terms of this sequence, the
Karhunen–Loève expansion of Z(t), holding in the space L2(Ω,A,P) pointwise
and converging almost surely uniformly on [ε, 1− ε] for every ε ∈ (0, 1), is

Z(t) =
∞∑

k=0

h∗k(t)√
k + 1

Zk+1, 0 < t < 1.

In this representation, by (2.9) and the fact that h0(t) =
√− log t = h∗0(t), we have
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W =
1∫
0

B2(t)− t(1− t)
t2 log t−1

dt−
[ 1∫

0

B(t)
t

dt

]2

=
1∫
0

[
Z2(t)− E(Z2(t)

)]
dt− [ 1∫

0

Z(t)h∗0(t) dt
]2

=
∞∑

k=0

∞∑

m=0

Zk+1Zm+1 − E(Zk+1Zm+1)√
k + 1

√
m + 1

1∫
0

h∗k(t)h
∗
m(t) dt

−
[ ∞∑

k=0

Zk+1√
k + 1

1∫
0

h∗k(t)h
∗
0(t) dt

]2

=
∞∑

k=0

Z2
k+1 − 1
k + 1

− Z2
1 = −1 +

∞∑

m=2

Z2
m − 1
m

.

The formal manipulations may be made rigorous as in the proof of Theorem 3.6 in
[6]: the random integrals and infinite series exist as L2(Ω,A,P) limits. Of course,
the final series for W converges almost surely. This proves (2.6) in Theorem 2.2.

Furthermore, aiming finally at (2.3), in the same representation,

V =
1
v

[
− 1 +

∞∑

m=2

Z2
m − 1
m

]

− 1
v2

[ 1∫
0

Z(t)
(
− log log

1
t

)√
log

1
t

dt − (γ − 1)Z1

]2

=
6

π2 − 6

[
− 1 +

∞∑

m=2

Z2
m − 1
m

]

− 36
(π2 − 6)2

[ ∞∑
k=0

Zk+1√
k + 1

ck − (γ − 1)Z1

]2

,

where v = (π2 − 6)/6 as before and, by a classical formula for the derivative of
the gamma function at a positive integer,

ck =
1∫
0

h∗k(t)
(
− log log

1
t

)√
log

1
t

dt

=
−1√
k + 1

1∫
0

Lk

(
log

1
t

)(
log log

1
t

)
log

1
t

dt

=
−1√
k + 1

∞∫
0

Lk(x)(log x) x e−x dx

=
1√

k + 1

∞∫
0

[ k∑

j=0

(
k + 1
k − j

)
(−x)j+1

j!
(log x) e−x

]
dx

=
1√

k + 1

k∑

j=0

(k + 1)k!
(k − j)!j!

(−1)j+1 Γ′(j + 2)
(j + 1)!
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and, by the binomial theorem,

ck =
√

k + 1
k∑

j=0

(
k

j

)
(−1)j+1

[
1 +

1
2

+ . . . +
1

j + 1
− γ

]

=
{

γ − 1 if k = 0,

1/(k
√

k + 1) if k > 0.

Indeed, for k ∈ N, writing ck =
√

k + 1 dk, rearranging the sum, using again the
binomial theorem in the form

k∑

l=1

(−1)l

(
k

l

)
= −1,

and the formula
k∑

j=m

(−1)j

(
k

j

)
= (−1)m

(
k − 1
m− 1

)
,

which is easily proved by mathematical induction on m, we find that

dk = −
k∑

j=0

(
k

j

)
(−1)j

[
1 +

1
2

+ . . . +
1

j + 1

]

=
k∑

j=0

(
k

j

)
(−1)j+1

j + 1
−

k∑

j=1

(
k

j

)
(−1)j

[
1 +

1
2

+ . . . +
1
j

]

=
1

k + 1

k∑

j=0

(−1)j+1

(
k + 1
j + 1

)
−

k∑

m=1

1
m

k∑

j=m

(−1)j

(
k

j

)

=
1

k + 1

k+1∑

m=1

(−1)m

(
k + 1

m

)
−

k∑

m=1

(−1)m 1
m

(
k − 1
m− 1

)

= −1
k

k∑

m=1

(−1)m

(
k

m

)
− 1

k + 1
1
k
− 1

k + 1
=

1
k(k + 1)

.

Therefore, substituting c0 = γ − 1 and ck = 1/(k
√

k + 1 ) for k ­ 1 into the last
formula of V above, (2.3) of Theorem 2.1 follows. This completes the proof of
both theorems. ¥

3. PERFORMANCE OF THE GUMBEL TESTS

3.1. Computation of the limiting distributions. First we aim at a precise nu-
merical determination of the limiting distribution functions Hl(x) = P{W ¬ x}
and Hl-s(x) = P{V ¬ x} that arose in Theorems 2.2 and 2.1, along with their
densities h l(x) = H ′l (x) and h l-s(x) = H ′l-s(x), x ∈ R. While the subscript l in
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Hl for location is adequate in the present paper, we must point out that the same
limiting distribution was obtained in [5] for the weighted quantile correlation test
statistic for all Gamma scale families with a known shape parameter and the corre-
sponding optimal de Wet weight function. In fact, Hl(x − 1) = P{W + 1 ¬ x},
x ∈ R, was obtained by de Wet and Venter [11] a long time ago for a similar test
statistic for the same Gamma scale problem. It follows from their work that if we
write the characteristic function φ(t) = E(eiWt) =

∫∞
−∞ eixt dHl(x) in the form

φ(t) = r(t)eiϑ(t), t ∈ R, then for the modulus and angle functions we have

r(t) = |φ(t)| =
(

2πt(1 + 4t2)
sinh(2πt)

)1/4

and ϑ(t) = −t +
1
2

∞∑

k=2

[
arctan

2t

k
− 2t

k

]
.

In particular, since
∫∞
−∞ |t|kr(t) dt < ∞ for every k ∈ N, it follows that Hl is

infinitely many times differentiable and, by the usual inversion formula,

Hl(x)−Hl(0)

=
1
2π

∞∫
∞

(1− e−ixt)φ(t)
it

dt =
1
π

∞∫
0

r(t)
t

[
sinϑ(t) + sin

(
tx− ϑ(t)

)]
dt,

and hence

h l(x) =
1
π

∞∫
0

r(t) cos
(
tx− ϑ(t)

)
dt, x ∈ R.

Taking x large, we obtain 1 −Hl(0), and thus all the values of Hl(x) and h l(x)
for −6 ¬ x ¬ 5, where Hl(−6) ≈ 0 and Hl(5) ≈ 1. This was done by integrating
numerically from 0 to 100 after truncating the infinite series for ϑ(·) at 10,000
terms.

We also determined Hl(·) and h l(·) by simulation. We generated 1,000,000
copies of the random variable−1 +

∑5000
j=2 (Z2

j − 1)/j, and computed their empir-
ical distribution function and a corresponding density function. The parameters in

Figure 1. The distribution functions Hl and Hl-s and their densities
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the numerical inversion and in the simulation were chosen such that the values of
Hl(·) and h l(·) be the same to two decimal places; the values of Hl(·) also agreed
with the suitably shifted values in Table 1 of [11] reasonably well, the three deci-
mals of which were obtained there by a similar numerical integration at the dawn
of the computer age. Thus our two procedures corroborate each other in a clean
fashion. Having thus checked the precision of the simulation, in the absence of an
invertible form of the characteristic function, the functions Hl-c(·) and h l-c(·) were
computed only by the simulation method, achieving full numerical stability in the
third decimal.

3.2. Speed of convergence. Using the sample sizes n = 50, 100, 1000, 10,000,
100,000 and 1,000,000 we simulated the distribution function of the location and
location-scale test statistics W �

n = nWn − c�n and V ?
n = nVn − c?

n under the stan-
dard Gumbel distribution. Working with the exact forms of the centering sequences
throughout, this was done using 1,000,000 repetitions for n ¬ 100; then for higher
n’s we gradually decreased the number of repetitions, using finally 5000 for n =
1,000,000. As shown in Figures 2 and 3, skipping for a clearer view the curves per-
taining to n = 10,000 and 100,000, we find in both cases that the convergence is
very slow overall. This is particularly true for the otherwise irrelevant small quan-
tiles, where the true distribution functions of both statistics appear far to the right
from the asymptotic ones, even for astronomically large n.

Figure 2. The distribution function of V ?
n for n = 50, 100, 1000, 1,000,000,∞

Table 1 shows in detail corresponding and further critical values of W �
n and

V ?
n that belong to confidence levels 0.85, 0.90, 0.95 and 0.99.
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Figure 3. The distribution function of W �
n for n = 50, 100, 1000, 1,000,000,∞

Clearly, for the usual testing levels the asymptotic critical points cannot be
used reliably for most sample sizes in practice. The usage of the asymptotic criti-
cal points consistently results in conservative location tests with the statistic W �

n ,
while that for the location-scale test with the statistic V ?

n yields exactly the op-
posite, anticonservative tests. Thus there will be consistently a greater number of
rejection than desirable for W �

n , and a lesser number for V ?
n . Therefore, the general

conclusion is that for any given sample size n occurring in an everyday practical
problem simulated critical points are better.

Table 1. Critical points of the test statistics V ?
n = nVn − c?

n and W �
n = nWn − c�n

n
V ?

n W �
n

0.85 0.90 0.95 0.99 0.85 0.90 0.95 0.99
10 −3.19 −2.97 −2.58 −1.67 0.54 0.81 1.26 2.61
20 −2.12 −1.87 −1.44 −0.43 0.44 0.72 1.21 2.57
50 −1.48 −1.21 −0.73 0.40 0.34 0.64 1.16 2.56
100 −1.24 −0.94 −0.42 0.80 0.28 0.60 1.15 2.52
200 −1.09 −0.78 −0.22 1.09 0.25 0.57 1.14 2.48
500 −0.97 −0.62 −0.03 1.37 0.22 0.55 1.14 2.47
1000 −0.92 −0.56 0.06 1.55 0.19 0.54 1.13 2.44

10,000 −0.84 −0.45 0.22 1.74 0.18 0.53 1.12 2.42
100,000 −0.82 −0.40 0.28 1.89 0.16 0.52 1.10 2.42

1,000,000 −0.82 −0.39 0.33 1.91 0.11 0.48 1.08 2.42
∞ −0.85 −0.39 0.35 2.04 0.08 0.45 1.05 2.41
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3.3. Power against other extreme value distributions. The standard Gum-
bel distribution function G(x) = G0(x) = limα→0 Gα(x) = exp(−e−x) is per-
haps best viewed as the “middle member” of the three standard types of extreme
value distribution functions, given by the parameter α < 0, α = 0 and α > 0,
in the summary formula Gα(x) = exp

(−(1 + αx)−1/α
)
, 1 + αx > 0. To as-

sess the power of the goodness-of-fit test for the composite location-scale null
hypothesis F ∈ Gl-c, for every α ∈ [−1, 0.8] we generated a sample of size n =
50, 100, 200, 500, 1000 from Gα(·), computed the location-scale statistic V ?

n on
this data and compared it with the exact simulated critical points of level 0.9 in Ta-
ble 1. Having performed this simulation 1,000,000 times, each point of the power
plots in Figure 4, estimating very precisely the probability of rejecting Gα ∈ Gl-c
by our test, is based on that many calculations. While of course there is no inherent
symmetry in the problem, we see that the test is generally better against α > 0 than
against α < 0, but on the whole one could not possibly expect a more exemplary
power behavior than the one witnessed here.

Figure 4. Power of the location-scale Gumbel test V ?
n against extreme value Gα

4. TEST FOR THE WEIBULL FAMILY

It belongs to statistical folklore that

Hβ,s(x) = P{T ¬ x} = 1− exp
(−(x/s)β

)
, x ­ 0,

if and only if

P{− log T ¬ x} = exp(−e−β(x+log s)) = G− log s,1/β(x), x ∈ R,
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that is, the positive random variable T has the Weibull distribution with some
shape parameter β > 0 and some scale parameter s > 0 if and only if − log T has
the Gumbel distribution with location parameter θ = − log s and scale parameter
σ = 1/β. Given a sample X1, . . . , Xn of independent positive random variables
with a common absolutely continuous distribution function F (x) = P{X ¬ x}, in
almost all types of reliability studies it may be important to test the general Weibull
hypothesis F ∈ H = {Hβ,s(·) : β > 0, s > 0}, which by the above is equivalent
to J ∈ Gl-c, where J(x) = P{− log X ¬ x} = 1 − F (e−x), x ∈ R. Thus, if we
denote the order statistics of − log X1, . . . ,− log Xn by L1,n ¬ . . . ¬ Ln,n and
redefine the location-scale Gumbel statistic as

Vn =

= 1−
6
[ n∑

k=1

Lk,n

{ k/n∫
(k−1)/n

(− log log t−1) log t−1 dt− (γ − 1)
k/n∫

(k−1)/n

log t−1 dt
}]2

(π2 − 6)
[ n∑

k=1

L2
k,n

k/n∫
(k−1)/n

log t−1 dt− ( n∑

k=1

Lk,n

k/n∫
(k−1)/n

log t−1 dt
)2]

,

then for this Vn we have the full form of Theorem 2.1 and the findings in Subsec-
tion 3.1 whenever F ∈ H.

To see this Weibull test in work, we considered Gamma distributions as natu-
ral alternatives, given by P{X ¬ x} = Γα(x) =

∫ x

0
yα−1e−ydy/Γ(α), x > 0, for

the shape parameter α > 0. Of course, the exponential distribution Γ1(·) is nothing
but the Weibull distribution H1,1(·), so it is the vicinity of α = 1 that is of interest.

Figure 5. Power of the Weibull test against Γα, 0.45 ¬ α ¬ 3
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Figure 5 depicts the simulated power of the Weibull test against Γα, again at the
confidence level 0.9, using the exact critical points from Table 1. This is based
on similar experiments described in the previous subsection; since the quantile
function here cannot be given in a closed form, Gamma variables are not easy to
simulate and it has taken days on a machine to compute the power as a function
of α in the whole interval [0.45, 3] for the same sample sizes as in Figure 3. The
similar nature of the densities explains the large sample sizes needed to pick up
appreciable power in general, but it is perhaps still surprising that the case α > 1
is so much worse. Nevertheless, the general picture is adequate on the whole.

5. TEST FOR THE PARETO FAMILY

Finally, in analogous or partially redefined notation relative to the previous
section, we consider the classHC = {Hβ,C(·) : β > 0} of Pareto distributions with
arbitrary shape parameter β > 0, given by Hβ,C(x) = P{T ¬ x} = 1− (C/x)β ,
x ­ C, where C > 0 is a known scale parameter. Since C is also the left endpoint
of the support, the difficulties associated with an unknown C are well known; in
practice, with a known or very closely estimated C, one would use the random
variable T/C to achieve a unit scale parameter for the new, re-scaled variable. The
Pareto model for some β > 0 and a known C > 0 holds if and only if

P{− log log(T/C) ¬ x} = exp(−e−(x−log β)) = Glog β,1(x), x ∈ R,

that is, the positive random variable T has the Pereto distribution with some shape
parameter β > 0 and a known scale parameter C > 0 if and only if− log log(T/C)
has the Gumbel distribution with location parameter θ = log β and scale parameter
σ = 1. Given a sample X1, . . . , Xn of independent random variables taking values
in [C,∞) for a known C > 0, specified by the statistical problem at hand, and a
common absolutely continuous distribution function FC(x) = P{X ¬ x}, prac-
tically all potentially long-tailed phenomena require testing the Pareto hypothesis
FC ∈ HC , which is equivalent to JC ∈ Gl, where

JC(x) = P{− log log(X/C) ¬ x} = 1− FC

(
C exp(e−x)

)
, x ∈ R.

So, this time let R1,n ¬ . . . ¬ Rn,n be the order statistics of− log log(X1/C), . . . ,
− log log(Xn/C), and then the redefined Gumbel location statistic is

Wn =
π2 − 6

6
+

n∑

k=1

R2
k,n

k/n∫
(k−1)/n

log
1
t

dt−
[ n∑

k=1

Rk,n

k/n∫
(k−1)/n

log
1
t

dt

]2

− 2
n∑

k=1

Rk,n

{ k/n∫
(k−1)/n

(
− log log

1
t

)
log

1
t

dt− (γ − 1)
k/n∫

(k−1)/n

log
1
t

dt

}
.
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For this Wn the full form of Theorem 2.2 and the respective findings in Subsec-
tion 3.1 all hold whenever FC ∈ HC .

To exhibit power properties we consider two versions of a type of an alterna-
tive: a generalized Pareto distribution with logarithmic slow variation, given by the
distribution function Gβ,α(x) = 1− (

logα(x + e− 1)
)
/xβ , x ­ 1, where β > 0

and, for this function to be nondecreasing, the parameter α must be restricted as
α ∈ (−∞, κ β], where κ ≈ 2.4286. Since Gβ,0(·) = Hβ,1(·), it is the parameter
intervals about α = 0 that are of interest. Using again the exact critical points from
Table 1 for a 0.9 test, we exhibit the power functions for β = 1 and β = 1/4 in
Figures 6 and 7 on the intervals [−1.5, 1.5] and [−2.5, 0.5], respectively.

Figure 6. Power of the Pareto test against G1,α, −1.5 ¬ α ¬ 1.5

It is intuitively clear in advance that the smaller β > 0 is, the better the power
should be against every permissible α ¬ κβ, α 6= 0. This heuristic expectation
turns out to be experimentally true in general and may be seen for β = 1/4 and
β = 1 in comparing the two figures; of course, we have similar figures for other β
values, different from 1/4 and 1, that are not included here. One can also argue that
accepting falsely Gβ,α(·) may not be a big problem in practice if β is large and the
modulus |α| of the exponent of the logarithmic nuisance function is not too big.

According to Figure 6, the test is still roughly satisfactory against G1,α for
α > 0. However, for n ¬ 1000 there is practically no power against G1,α for
α < 0 when positive powers of the logarithm are in the denominator. The power
is still an increasing function of n, which is to be expected in view of the fact
that theoretically the test is consistent against Gβ,α for every β > 0 and every
α ∈ (−∞, κ β ] \ {0}.
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Figure 7. Power of the Pareto test against G1/4,α, −2.5 ¬ α ¬ 0.5

The overall improvement for the small β = 1/4 in Figure 7, both in com-
parison with the situation for β = 1 in Figure 6 and in absolute terms, is simply
dramatic. Since very large exponents of the logarithm in the denominator are like
a small algebraic power, one may clearly argue in a heuristic fashion that for every
β > 0 among the negative α there should exist an optimal one for which the power
is maximal, but even a conjecture would be difficult to make concerning the value
of such an α = αβ < 0. In particular, we must leave it here as an interesting puzzle
or challenge why α1/4 should be about −0.8, as seen on Figure 7.

We note in closing that, similarly to the consistency statement above, the
Weibull test in Section 4 is also consistent against every alternative Γα, α > 0,
α 6= 1, considered there, just as the Gumbel test in Section 3 is consistent against
every other extreme value distribution Gα, α 6= 0. All these nice theoretical facts
may be proved by going back to the derivation of the test statistics in [4] and using
the theory of asymptotic consistency for empirical quantile functions. In fact, some
general consistency statements can be proved under suitable regularity conditions
on F and the G that generates the location, scale or location-scale family G, which
conditions are somewhat less demanding than those required in [4] and [8] for the
existence of the asymptotic distributions of the corresponding test statistics under
the null hypotheses. These are not worked out in the literature presumably because,
as seen in some of the examples above, they are of limited practical importance.

Conversely, the power examples above suggest that the quantile correlation
statistics proposed here for testing composite goodness of fit to Gumbel, Weibull
and Pareto families may prove to be useful in a variety of practical scenarios.



250 S. Csörgõ and T. Szabó

REFERENCES

[1] A. Cabaña and A. J . Quiroz, Using the empirical moment generating function in testing
for the Weibull and the Type I extreme value distribution, Test 13 (2005), pp. 417–431.

[2] S. Csörgõ, Testing for Weibull scale families as a test case for Wasserstein correlation tests
(Discussion of [7]), Test 9 (2000), pp. 54–70.

[3] S. Csörgõ, Weighted correlation tests for scale families, Test 11 (2002), pp. 219–248.
[4] S. Csörgõ, Weighted correlation tests for location-scale families, Math. Comput. Modelling

38 (2003), pp. 753–762.
[5] S. Csörgõ and T. Szabó, Weighted correlation tests for gamma and lognormal families,

Tatra Mt. Math. Publ. 26 (2003), pp. 337–356.
[6] E. del Barr io , J . A. Cuesta-Albertos and C. Matrán, Contributions of empirical and

quantile processes to the asymptotic theory of goodness-of-fit tests (With discussion), Test 9
(2000), pp. 1–96.

[7] E. del Barr io , J . A. Cuesta-Albertos , C. Matrán and J. M. Rodríguez-Ro-
dríguez, Tests of goodness of fit based on the L2-Wasserstein distance, Ann. Statist. 27 (1999),
pp. 1230–1239.

[8] E. del Barr io , E. Giné and F. Utzet, Asymptotics for L2 functionals of the empirical
quantile process, with applications to tests of fit based on weighted Wasserstein distances,
Bernoulli 11 (2005), pp. 131–189.

[9] T. de Wet, Discussion of [7], Test 9 (2000), pp. 74–79.
[10] T. de Wet, Goodness-of-fit tests for location and scale families based on a weighted L2-

Wasserstein distance measure, Test 11 (2002), pp. 89–107.
[11] T. de Wet and J. Venter, A goodness of fit test for a scale parameter family of distributions,

South African Statist. J. 7 (1973), pp. 35–46.
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