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Abstract. The negative binomial approximations arise in telecommu-
nications, network analysis and population genetics, while compound nega-
tive binomial approximations arise, for example, in insurance mathematics.
In this paper, we first discuss the approximation of the sum of indepen-
dent, but not identically distributed, geometric (negative binomial) random
variables by a negative binomial distribution, using Kerstan’s method and
the method of exponents. The appropriate choices of the parameters of the
approximating distributions are also suggested. The rates of convergence
obtained here improve upon, under certain conditions, some of the known
results in the literature. The related Poisson convergence result is also stud-
ied. We then extend Kerstan’s method to the case of compound negative
binomial approximations and error bounds for the total variation metric are
obtained. The approximation by a suitable finite signed measure is also stud-
ied. Some interesting special cases are investigated in detail and a few ex-
amples are discussed as well.
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1. INTRODUCTION

Let {Xi} be a sequence of discrete random variables (rv’s) and Sn =
∑n

j=1Xj .
When the Xi are independent B(pi) variables, it is known that (see Khintchine [15]
or Le Cam [16])

dTV

(
Sn, P (λ)

) ¬
n∑

i=1

p2
i ,(1.1)
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where, for any two rv’s X and Y ,

dTV (X, Y ) = sup
A
|P (X ∈ A)− P (Y ∈ A)|

denotes the total variation metric and P (λ) denotes the Poisson variable with pa-
rameter λ =

∑n
i=1 pi. Kerstan [14] improved the above bound to

dTV

(
Sn, P (λ)

) ¬ 1.05
( n∑

i=1

p2
i

)
/
( n∑

i=1

pi

)

when pi ¬ 1/4. Barbour and Hall [3] further improved the bound to

dTV

(
Sn, P (λ)

) ¬
n∑

i=1

p2
i min{1, λ−1},

where λ−1 is known as the ‘magic factor’. See, also Barbour et al. [4] for more
details and related results. The negative binomial (NB) approximation to the sum
of indicator rv’s is studied by Brown and Phillips [5]. They showed that NB dis-
tribution arises also as the limiting distribution of Pólya distribution. Also, Brown
and Xia [6] considered the NB approximation to the number of two-runs.

In this paper, we first consider the problem of approximating the distribution
of Sn =

∑n
i=1 Xi, where Xi’s are independent geometric Ge(pi) variables, by an

NB(r, p) distribution. In Section 2, we obtain the upper bounds similar to (1.1),
using Kerstan’s method (Kerstan [14]) and generalize the results to the sum of
independent negative binomial random variables using the method of exponents
(Čekanavičius and Roos [8]–[10]). Also, the conditions under which Sn

L→ P (λ)
are investigated. Kerstan’s method is originally due to Kerstan [14], which was
later modified and used by several authors, say, for example, Daley and Vere-Jones
([11], pp. 187–190), Witte [30] and Roos [19], [20], where the problems of Poisson,
multivariate Poisson and compound Poisson (CP) approximations are considered.
Recently, Barbour [2] obtained a bound, using Stein’s method, for multivariate
Poisson-binomial distribution. This bound is comparable to the one obtained by
Roos [19] using Kerstan’s method. Also, Roos [20] studied CP approximations for
the sums of independent discrete valued rv’s using Kerstan’s method. Čekanavičius
[7] considered approximation of compound distributions using Le Cam’s [16] op-
erator theoretic method.

Note that the CP distribution plays an important role in risk theory. Consider
the model for the total claim amount in a portfolio of insurance policies. Let N
denote the number of claims arising from policies in a given period of time, and let
Xi denote the claim size amount of the i-th claim. In a collective risk model, the
random sum SN =

∑N
i=1 Xi denotes the aggregate claim, where it is assumed that

Xi’s are iid and N is independent of the Xi. In many applications, the number of
claims N is assumed to follow Poisson distribution, and thus the distribution of the
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random sum SN is a CP distribution. However, there are many situations (see, for
example, Panjer and Willmot [18], Drekic and Willmot [12]) and, in particular, in
non-life insurance modeling, the CP distribution may not serve as a suitable model
for the insurance data. In such cases, and especially when V(N) > E(N), an NB
model is usually suggested. Thus, the study of the compound negative binomial
(CNB) distribution arises naturally, and hence the CNB approximation problems
are of importance. In Section 3, we use Kerstan’s method to obtain the first-order
result for the total variation distance. Also, we study the approximation of Sn by a
finite signed measure, which leads to the improvements in the constant that appears
in the first-order result. In Section 4, we apply our results to the distributions which
can be written as infinite mixtures and obtain results analogous to the ones given in
Section 3. Finally, an application of our results to life and health insurance is also
pointed out.

2. NEGATIVE BINOMIAL AND POISSON APPROXIMATIONS

Throughout the paper, Z+ = {0, 1, . . .} denotes the set of non-negative inte-
gers. Let Xi ∼ Ge(pi), 1 ¬ i ¬ n, be independent geometric rv’s with

P (Xi = k) = pi(1− pi)k for k ∈ Z+, 0 < pi < 1.

We are interested in approximating the distribution of the sum Sn =
∑n

j=1 Xj to
an NB(r, p) rv N with

P (N = k) =
(

r + k − 1
k

)
pr(1− p)k for k ∈ Z+,

where r > 0 and 0 < p < 1, and also choosing the appropriate parameters r and
p so that the error is minimum. We adopt Kerstan’s method (see Roos [19]) and
the method of exponents (see Čekanavičius and Roos [8]–[10]) for finding upper
bounds for dTV (Sn, N).

2.1. Kerstan’s method. For the power series f(z) =
∑∞

m=0 amzm, where
am ∈ R and z ∈ C, define the norm ‖f(z)‖ =

∑∞
m=0 |am|. Then, it is well known

that ‖f1(z)f2(z)‖ ¬ ‖f1(z)‖‖f2(z)‖. For a Z+-valued rv X , the probability gen-
erating function (pgf)

E(zX) =
∞∑

m=0

zmP (X = m),

where z ∈ C and |z| ¬ 1, exists. Then, for X ­ 0 and Y ­ 0 (see Roos [19]),

dTV (X,Y ) =
1
2
‖E(zX)− E(zY )‖.(2.1)

We now obtain the norm estimates for γ(z) = E(zSn)−E(zN ) for the case r = n.
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Note that

γ(z) =
n∏

i=1

(
pi

1− qiz

)
−

(
p

1− qz

)n

(2.2)

=
[ n∏

i=1

(1 + Li)− 1
] (

p

1− qz

)n

(2.3)

=
n∑

j=1

∑

1¬i1<...<ij¬n

j∏
s=1

[
Lis

(
p

1− qz

)n/j ]
,(2.4)

where

Li =
pi(1− qz)
p(1− qiz)

− 1 =
(

1− pi

p

)
(z − 1)

(1− qiz)
.

Therefore, using Lemma 3.1 of Čekanavičius and Roos [8] and ‖1/(1 − qiz)‖ =
1/pi, we get

∥∥∥∥Li

(
p

1− qz

)n/j ∥∥∥∥ ¬
1
pi

∣∣∣∣1−
pi

p

∣∣∣∣
∥∥∥∥(z − 1) exp

(
n

j

∞∑

m=1

qm

m
(zm − 1)

)∥∥∥∥

¬ 1
pi

∣∣∣∣1−
pi

p

∣∣∣∣
∥∥(z− 1) exp

(
(nq/j)(z− 1)

)∥∥ ¬ 1
pi

∣∣∣∣1−
pi

p

∣∣∣∣min
{

2,

√
2j

nqe

}
,

since

‖h(z)‖ =
∥∥ exp

{
(n/j)

∞∑

m=2

qm(zm − 1)/m
}∥∥ = 1.

For, if λm = nqm/(jm), λ =
∑∞

m=2 λm and Q({m}) = λm/λ, then h(z) =
E(zX), where X ∼ CP (λ,Q). Hence, from (2.4) we obtain

‖γ(z)‖ ¬
n∑

j=1

∑

1¬i1<i2<...<ij¬n

j∏
s=1

∥∥∥∥Lis

(
p

1− qz

)n/j ∥∥∥∥(2.5)

¬
n∑

j=1

1
j!

[ n∑

i=1

∥∥∥∥Li

(
p

1− qz

)n/j ∥∥∥∥
]j

¬
n∑

j=1

1
j!

[ n∑

i=1

1
pi

∣∣∣∣1−
pi

p

∣∣∣∣min
{

2,

√
2j

nqe

}]j

¬
n∑

j=1

(
√

jαn)j

j!
,

where

αn =
n∑

i=1

1
pi

∣∣∣∣1−
pi

p

∣∣∣∣min
{

2,

√
2

nqe

}
.(2.6)

Thus, from (2.1)–(2.5), we have the following result.
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THEOREM 2.1. Let Xi, 1 ¬ i ¬ n, be a sequence of independent geometric
Ge(pi) variables, Sn =

∑n
j=1 Xj , and N ∼ NB(n, p). Then

(2.7) dTV (Sn, N) ¬ min{1.37αn, 1},

and, when αn < e,

(2.8) dTV (Sn, N) ¬ αn/e

2
√

2π(1− αn/e)
,

where αn is given by (2.6).

The first estimate (referred to as a practical estimate), given in (2.7), follows
from the fact that

dTV (Sn, N) ¬ min{f(αn), 1} ¬ min
{

αn

x0
, 1

}
,

where f(x) = 1
2

∑∞
j=1(x

√
j)j/j! and, numerically, it can be seen that 0.73 <

x0 < 0.74 is the unique solution of f(x) = 1. The later estimate follows by an ap-
plication of Stirling’s approximation formula and is less than one when αn < 2.26.

REMARK 2.1. (i) If pi = p, then it follows from (2.7) that dTV (Sn, N) = 0,
which holds iff Sn ∼ NB(n, p), as expected.

(ii) Observe that the bound given in (2.7) contains a ‘magic factor’ (nq)−1/2

which improves the estimate for large n.
(iii) Let µn =

∑n
i=1(qi/pi). One way to choose p is such thatE(Sn)= E(N),

which leads to the choice p = n/(n + µn) and the upper bound for this case can
be obtained from the practical estimate given in (2.7). The other choices of p for
better accuracy are p = mini pi and p = maxi pi.

Next, we obtain some improvements over the above results along with gener-
alizations for the sum of independent NB variables.

2.2. The method of exponents. In this subsection, we obtain an NB(r, p) ap-
proximation result for Sn =

∑n
j=1 Xj , where Xj ∼ NB(αj , pj), using the method

of exponents. Here, we assume that r = α =
∑n

i=1 αi and p =
(∑n

i=1 αipi

)
/α

and write the pgf of Sn as

E(zSn) =
n∏

j=1

(
pj

1− qjz

)αj

= exp
( n∑

j=1

αj ln
(

pj

1− qjz

))
(2.9)

= exp
( ∞∑

m=1

1
m

n∑

j=1

αjq
m
j (zm − 1)

)
:= exp(F ).
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Similarly,

(2.10) E(zN ) = exp
(

α
∞∑

m=1

qm

m
(zm − 1)

)
:= exp(A).

Now

‖ exp(F )− exp(A)‖ =
∥∥∥ exp(A)

1∫
0

(
exp

(
x(F −A)

))′
dx

∥∥∥

¬
1∫
0

∥∥(F −A) exp
(
xF + (1− x)A

)∥∥dx,

where the prime (′) denotes the derivative with respect to x. Substituting the power
series expansion for F and A from (2.9) and (2.10), respectively, we obtain, for
0 < x < 1,

xF + (1− x)A = αq(z − 1) + T,

where

T =
∞∑

m=2

1
m

( n∑

j=1

xαjq
m
j + (1− x)αqm

)
(zm − 1).

Also, observe that exp(T ) forms a compound distribution, as all the multipliers of
(zm − 1) in T are non-negative, and hence ‖ exp(T )‖ = 1. Therefore,

∥∥ exp(F )− exp(A)‖ ¬ ∥∥(F −A) exp
(
αq(z − 1)

)∥∥

¬
∞∑

m=2

1
m

( n∑

j=1

αjq
m
j − αqm

)∥∥(zm − 1) exp
(
αq(z − 1)

)∥∥

¬
( n∑

j=1

αjq
2
j

pj
− αq2

p

)∥∥(z − 1) exp
(
αq(z − 1)

)∥∥

¬
( n∑

j=1

αjq
2
j

pj
− αq2

p

)
min

{
2,

√
2

αqe

}
,

where the non-negativity in the second inequality is implied by the fact that αqm

¬∑n
j=1 αjq

m
j , which in turn follows from a simple application of Jensen’s in-

equality. Also, the last inequality follows from Lemma 3.1 of Čekanavičius and
Roos [8]. Thus, we obtain the following result from (2.1).

THEOREM 2.2. For αi > 0, let Xi ∼ NB(αi, pi), 1 ¬ i ¬ n, be a sequence
of independent random variables, Sn =

∑n
i=1 Xi, and N ∼ NB(α, p), where

α =
∑n

i=1 αi and p =
∑n

i=1 αipi/α. Then

(2.11) dTV (Sn, N) ¬
( n∑

j=1

αjq
2
j

pj
− αq2

p

)
min

{
1,

1√
2αqe

}
.
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REMARK 2.2. Observe that the bound in (2.11), obtained using the method of
exponents, also involves the ‘magic factor’ (αq)−1/2 and is comparable to the one
given in (2.7) obtained by Kerstan’s method.

2.3. NB to Poisson approximation. Let N ∼ NB(r, p), where r > 0 and
0 < p < 1, and Y ∼ P (λ). Here, we follow the approach of expansion in the ex-
ponents. Write the pgf of N (see (2.10)) as

E(zN ) = exp
(

r
∞∑

m=1

qm

m
(zm − 1)

)
= exp(A).

Also, the pgf of Y is exp
(
λ(z − 1)

)
:= exp(B). Then, as seen earlier,

‖ exp(A)− exp(B)‖ ¬
1∫
0

∥∥(A−B) exp
(
xA + (1− x)B

)∥∥dx.

Moreover,

xA + (1− x)B = rq(z − 1) +
∞∑

m=2

1
m

(
xqm(zm − 1)

)
:= rq(z − 1) + M.

Then ‖ exp(M)‖ = 1, as all the multipliers of (zm − 1) are non-negative. Letting
rq = λ and following the arguments similar to the derivation of Theorem 2.2, we
obtain

THEOREM 2.3. Let N ∼ NB(r, p) and Y ∼ P (λ), where λ = rq and q =
1− p. Then

dTV (N,Y ) ¬ rq2

p
min

{
1,

1√
2rqe

}
.(2.12)

REMARK 2.3. (i) The bound given above contains the ‘magic factor’ λ−1/2

which reduces the bound considerably when λ = rq is large.
(ii) The best available bound in the literature for this case is given by Roos

[22] (see also Roos [21]), namely,

dTV (N,Y ) ¬ rq

p2
min

{
3p

4rqe
, 1

}
.(2.13)

It can be seen that our bound in (2.12) is better than the above one, when r ¬(
3/(4q2e)

)
min{1, 3/(2q)}.

Finally, we give below the rate of convergence result for Poisson approxima-
tion to Sn, obtained using again the method of exponents.
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THEOREM 2.4. Let Xi ∼ NB(αi, pi), 1 ¬ i ¬ n, be independent random
variables, and Sn =

∑n
i=1 Xi. Then

dTV

(
Sn, P (λ)

) ¬
n∑

j=1

αjq
2
j

pj
min

{
1,

1√
2λe

}
,(2.14)

where λ =
∑n

i=1 αiqi = αq.

REMARK 2.4. (i) It is interesting to note that the bound in (2.14) is nothing
but the sum of the bounds in (2.11) and (2.12).

(ii) A comparison of bounds (2.11) and (2.14) shows that an NB approxi-
mation is better than Poisson approximation in the case of sum of independent
NB(αi, pi) variables. This motivates our study of approximation by compound
distributions and, in particular, to CNB distribution in the next section.

COROLLARY 2.1. Let {Xni} be a sequence of Ge(pni) variables, and Sn =∑n
i=1 Xni. If max1¬i¬n qni→ 0 so that

∑n
i=1 qni → λ > 0 as n→∞, then

Sn
L→ P (λ).

The corollary follows from (2.14) and the fact that

0 ¬ lim
n→∞

n∑

j=1

q2
nj

pnj
¬ lim

n→∞( max
1¬j¬n

qnj) lim
n→∞

n∑

j=1

qnj

pnj
= 0.

The above result is essentially due to Wang [29].

3. APPROXIMATION BY COMPOUND DISTRIBUTIONS

In this section, we study CNB approximation to Sn, where Sn =
∑n

i=1 Xi,
and Xi ∼ Fi, a discrete real-valued distribution.

3.1. Preliminary results. Let µ be a finite signed measure on (R,B). A mea-
surable set B is said to be a positive set with respect to µ, denoted by B ­ 0, if
µ(A ∩ B) ­ 0 for every A ∈ B. Similarly, a set C is called a negative set with
respect to µ, denoted by C ¬ 0, if µ(C ∩ A) ¬ 0 for every A ∈ B. Also, a pair
(B, C) is said to be the Hahn decomposition of R if B ∪C = R, where B ­ 0 and
C ¬ 0. Also, the total variation norm of µ is defined (see, for example, Aliprantis
and Burkinshaw [1]; Rudin [23])) as

‖µ‖ = |µ|(R) = µ+(R) + µ−(R) = µ(B)− µ(C)(3.1)
= 2µ(B)− µ(R),
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where µ+ and µ− are positive and negative variations of µ. It is well known that
the total variation distance dTV between the distribution of two discrete rv’s X and
Y is

dTV (X, Y ) = sup
A
|P (X ∈ A)− P (Y ∈ A)|(3.2)

= P (X ∈ D)− P (Y ∈ D)

= (PX − PY )(D) := µX,Y (D),(3.3)

where D = {m : P (X = m) ­ P (Y = m)} =
{
m : µX,Y {m} ­ 0

}
is a posi-

tive set of µX,Y (Wang [28] or Vellaisamy and Chaudhuri [25]). Also, by (3.1), we
have

(3.4) ‖µX,Y ‖ = 2µX,Y (D).

Thus, from (3.3) and (3.4) we obtain the relation

dTV (X,Y ) = µX,Y (D) =
1
2
‖µX,Y ‖,

where D is a positive set of µX,Y .

3.2. CNB and CP approximations. Let Yi be iid real-valued rv’s with distri-
bution Q, N ∼ NB(r, p), and M ∼ P (λ), λ > 0. Assume that the Yi, N and M

are independent. Then the distribution of TN =
∑N

j=1 Yj is the CNB distribution
with parameters r, p and Q, and is denoted by CNB(r, p,Q). Since

P (TN ∈ A) =
∞∑

k=0

P (N = k)Q∗k(A),

we get

(3.5) CNB(r, p, Q) =
(

pδ0

δ0 − qQ

)r

,

where q = 1 − p, Q∗k denotes the k-fold convolution of Q, and δ0 is the Dirac
measure at 0. Similarly, the distribution of TM , denoted by CP (λ,Q), is the CP
distribution with parameters λ and Q, and its distribution is exp

(
λ(Q− δ0)

)
. First,

we obtain the error bounds in the approximation of CNB(r, p, Q) to CP (λ,Q).

THEOREM 3.1. Let r > 0, Q be any distribution on R and rq = λ. Then

sup
Q

∥∥∥∥
(

pδ0

δ0 − qQ

)r

− exp
(
λ(Q− δ0)

)∥∥∥∥ ¬
rq2

p
min

{
2,

√
2
λe

}
.
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P r o o f. First note that for every Q
∥∥∥∥
(

pδ0

δ0 − qQ

)r

− exp
(
λ(Q− δ0)

)∥∥∥∥

¬
∞∑

m=0

∣∣∣∣
(

r + m− 1
m

)
prqm − e−λλm

m!

∣∣∣∣ ‖Q‖m

=
∥∥∥∥
(

pδ0

δ0 − qδ1

)r

− exp
(
λ(δ1 − δ0)

)∥∥∥∥ = 2dTV (N,Y ),

and now the result follows from Theorem 2.3. ¥

REMARK 3.1. The above result follows easily also from Theorem 2.3 and
Lemma 3.1 of Vellaisamy and Chaudhuri [24].

Next we consider the approximation of finite sum Sn =
∑n

j=1 Zj , where

Zj =
∑Nj

i=1 Xi, and Nj ∼ NB(αj , pj), to the distributions CNB(n, p, Q) and
CP (λ,Q). Note that Zj ∼ CNB(αj , pj , Q) =

(
pjδ0/(δ0 − qjQ)

)αj , the com-
pound negative binomial distribution with parameters αj > 0, pj and Q.

THEOREM 3.2. Let Sn =
∑n

j=1 Zj , where Zj’s are independent with distri-
butions CNB(αj , pj , Q). Then, for any distribution Q on R, we have

(3.6) sup
Q

∥∥∥∥
n∏

i=1

(
piδ0

δ0 − qiQ

)αi

−
(

pδ0

δ0 − qQ

)α∥∥∥∥

¬
( n∑

i=1

αiq
2
i

pi
− αq2

p

)
min

{
2,

√
2

αqe

}
;

(3.7) sup
Q

∥∥∥∥
n∏

i=1

(
piδ0

δ0 − qiQ

)αi

− exp
(
λ(Q− δ0)

)∥∥∥∥

¬
n∑

i=1

αiq
2
i

pi
min

{
2,

√
2
λe

}
,

where α =
∑n

i=1 αi, p =
∑n

i=1 αipi/α, q = 1− p and λ = αq.

P r o o f. The bound in (3.6) follows from Theorem 2.2 and the fact that for
every Q
∥∥∥∥

n∏
i=1

(
piδ0

δ0 − qiQ

)αi

−
(

pδ0

δ0 − qQ

)α∥∥∥∥ ¬
∥∥∥∥

n∏
i=1

(
piδ0

δ0 − qiδ1

)αi

−
(

pδ0

δ0 − qδ1

)α∥∥∥∥.

Similarly, the bound in (3.7) follows from Theorem 2.4 and for every Q
∥∥∥∥

n∏
i=1

(
piδ0

δ0 − qiQ

)αi

− exp
(
λ(Q− δ0)

)∥∥∥∥ ¬
∥∥∥∥

n∏
i=1

(
piδ0

δ0 − qiδ1

)αi

− exp
(
λ(δ1 − δ0)

)∥∥∥∥.

Then the proof is completed. ¥
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REMARK 3.2. A comparison of the bounds given in (3.6) and (3.7) shows that
CNB approximations may be preferred over CP approximations.

3.3. CNB approximation to Sn by Kerstan’s method. In this section, we con-
sider the sum Sn of n independent rv’s X1, X2, . . . , Xn taking values in R. Also,
let pi = P (Xi 6= 0), qi = P (Xi = 0) and Qi(·) = P (Xi ∈ · |Xi 6= 0) denote the
conditional probability measures. Then, for any Borel measurable set A ⊂ R,

(3.8) P (Xi ∈ A) = qiP (Xi ∈ A |Xi = 0) + piQi(A) = (qiδ0 + piQi)(A),

and hence the distribution of Sn is

(3.9) L(Sn) = L(X1) ∗ L(X2) ∗ . . . ∗ L(Xn) =
n∏

j=1

(
δ0 + pj(Qj − δ0)

)
.

REMARK 3.3. Note that for the representation in (3.9), it suffices that the Xi

are independent of Si−1 for every 1 ¬ i ¬ n. However, the independence of Xi

and Si−1, 1 ¬ i ¬ n, does not imply independence of the Xi (see Example 2.1
of Vellaisamy and Upadhye [27]). We refer to such models as previous-sum inde-
pendent models. Recently, Vellaisamy and Sankar [26] have used such models for
modeling dependent production processes.

Our aim in this section is to approximate the distribution L(Sn) to a suitable
CNB(n, p, Q) = L(TN ). We choose the parameter p and the distribution Q such
that E(Sn) = E(TN ) which may possibly reduce dTV (Sn, TN ). Let now

(3.10) Q =
1

∑n

i=1
pi

n∑

i=1

piQi

be the probability distribution of Y1 so that Q is a finite mixture of Q1, Q2, . . . , Qn,
where Qj’s are as given in (3.8). Since

E(Xi) =
∫
R

xd(qiδ0 + piQi) =
∫
R

xd(piQi),

we have

E(Y1) =
1

∑n

i=1
pi

∫
R

xd
( n∑

i=1

piQi

)
=

E(Sn)
∑n

i=1
pi

.

This leads to

E(TN ) =
E(N)E(Sn)

∑n

i=1
pi

.

Hence,

E(Sn) = E(TN )⇐⇒ E(N) =
n∑

i=1

pi ⇐⇒ nq

p
=

n∑

i=1

pi.
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Solving for p, we get

p =
n

n +
∑n

i=1
pi

.(3.11)

Henceforth, all products represent the convolutions. Substituting (3.11) and (3.10)
in (3.5), and using (3.9), we obtain

(3.12) L(Sn)− CNB(n, p,Q)

=
n∏

j=1

(
δ0 + pj(Qj − δ0)

)−
(

pδ0

δ0 − qQ

)n

=
n∏

j=1

(
δ0 + pj(Qj − δ0)

)−
(

nδ0

nδ0 −
∑n

i=1
pi(Qi − δ0)

)n

=
( n∏

j=1

(δ0 + Lj)− δ0

)
CNB(n, p, Q)

=
n∑

j=1

∑

1¬i1<...<ij¬n

j∏
s=1

(
LisCNB(n/j, p, Q)

)
,

where

Li =
(
δ0 + pi(Qi − δ0)

)(
δ0 −

n∑

j=1

pj

n
(Qj − δ0)

)
− δ0(3.13)

= pi(Qi − δ0)−
(
δ0 + pi(Qi − δ0)

) n∑

j=1

pj

n
(Qj − δ0).

Therefore,

‖L(Sn)− CNB(n, p,Q)‖ ¬
n∑

j=1

1
j!

( n∑

i=1

‖LiCNB(n/j, p, Q)‖)j
,(3.14)

where Li is as defined in (3.13).

3.4. Norm estimates.

LEMMA 3.1. Let Q and p be defined in (3.10) and (3.11), respectively. Then
for any r > 0

‖(Qi − δ0)CNB(r, p,Q)‖ ¬ 2
(

1− pi

n + λ

)1∧r

,(i)

‖LiCNB(r, p, Q)‖ ¬ 2
(

pi

(
1− pi

n + λ

)1∧r

+
n∑

j=1

pj

n

(
1− pj

n + λ

)1∧r )
,(ii)

where λ =
∑n

i=1 pi and q = 1− p.
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P r o o f. (i) Let R1 = (pi/λ)Qi, and R2 =
∑n

j=1, j 6=i pjQj/λ, so that Q =
R1 + R2. Note first that

(Qi − δ0)CNB(r, p, Q) = (Qi − δ0)
(

pδ0

δ0 − qR1

δ0 − qR1

δ0 − q(R1 + R2)

)r

which leads to

(3.15) ‖(Qi − δ0)CNB(r, p,Q)‖ ¬
∥∥∥∥(Qi − δ0)

(
pδ0

δ0 − qR1

)r ∥∥∥∥‖R‖,

where R =
(
(δ0 − qR1)/(δ0 − qQ)

)r. Now

‖R‖ =
∥∥∥∥
(

δ0 − qR1

δ0 − q(R1 + R2)

)r∥∥∥∥

=
∥∥∥∥
(

δ0

δ0 − qR2/(δ0 − qR1)

)r∥∥∥∥

=
∥∥∥∥
∞∑

m=0

(
r + m− 1

m

) (
qR2

δ0 − qR1

)m ∥∥∥∥

¬
∞∑

m=0

(
r + m− 1

m

)
qm‖R2‖m

∞∑

s=0

(
m + s− 1

s

)
qs‖R1‖s

¬
∞∑

m=0

(
r + m− 1

m

)
qm

(
λ− pi

λ

)m ∞∑

s=0

(
m + s− 1

s

)
qs

(
pi

λ

)s

=
∞∑

m=0

(
r + m− 1

m

)
qm

(
λ− pi

λ

)m (
λ

λ− qpi

)m

=
(

λ− qpi

λp

)r

.

Substituting the values of p and q, we get

‖R‖ ¬
(

1 +
λ− pi

n

)r

.(3.16)

Consider next
∥∥∥∥(Qi − δ0)

(
pδ0

δ0 − qR1

)r ∥∥∥∥

=
∥∥∥∥(Qi − δ0)

∞∑

k=0

(
r + k − 1

k

)
pr(qR1)k

∥∥∥∥

=
∥∥∥∥(Qi − δ0)

∞∑

k=0

(
r + k − 1

k

)
pr

(qpi

λ

)k
Qk

i

∥∥∥∥

= pr

∥∥∥∥
∞∑

k=0

(
r + k − 1

k

)
µkQk+1

i −
∞∑

k=0

(
r + k − 1

k

)
µkQk

i

∥∥∥∥,
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where µ = qpi/λ. Now, putting k + 1 = m in the first summation and k = m in
the second summation, we obtain

(3.17)
∥∥∥∥(Qi − δ0)

(
pδ0

δ0 − qR1

)r∥∥∥∥

= pr

∥∥∥∥
∞∑

m=1

((
r + m− 2

m− 1

)
µm−1 −

(
r + m− 1

m

)
µm

)
Qm

i − δ0

∥∥∥∥

¬ pr

(
1 +

∞∑

m=1

∣∣∣∣
(

r + m− 2
m− 1

)
µm−1 −

(
r + m− 1

m

)
µm

∣∣∣∣ ‖Qi‖m
)

= pr

(
1 +

∞∑

m=1

(
r + m− 2

m− 1

)
µm−1

∣∣∣∣
m(1− µ)− (r − 1)µ

m

∣∣∣∣
)

.

When r ­ 1, we get from (3.17)

(3.18)
∥∥∥∥(Qi − δ0)

(
pδ0

δ0 − qR1

)r∥∥∥∥

¬ pr

(
1 +

∞∑

m=1

(
r + m− 2

m− 1

)
µm−1

(
(1− µ) + (r − 1)

µ

m

))

=
2pr

(1− µ)r−1
.

Similarly, when 0 < r < 1, we obtain

(3.19)
∥∥∥∥(Qi − δ0)

(
pδ0

δ0 − qR1

)r ∥∥∥∥ ¬ 2pr.

Substituting the values of p and µ in (3.18) and (3.19), we finally get

‖(Qi − δ0)CNB(r, p,Q)‖ ¬ 2
(

1− pi

n + λ

)1∧r

,

which proves part (i).

(ii) Observe that, from (3.13),

‖LiCNB(r, p,Q)‖ ¬ pi‖(Qi − δ0)CNB(r, p, Q)‖

+
∥∥∥∥
(
δ0 + pi(Qi − δ0)

) n∑

j=1

pj

n
(Qj − δ0)CNB(r, p, Q)

∥∥∥∥

¬ 2
(

pi

(
1− pi

n + λ

)1∧r

+
n∑

k=1

pk

n

(
1− pk

n + λ

)1∧r )
,

using (3.8) and part (i). Hence, the lemma follows. ¥
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3.5. The first-order result. We obtain the error bounds on the total variation
distance dTV

(
Sn, CNB(n, p, Q)

)
for the choices of p and Q discussed in Subsec-

tion 3.4.

THEOREM 3.3. Let Xi, 1 ¬ i ¬ n, be independent real-valued rv’s with pi =
P (Xi 6= 0), and Qi(·) = P (Xi ∈ · |Xi 6= 0). Also, let

λ =
n∑

i=1

pi, Q =
1
λ

n∑

i=1

piQi and p =
n

n + λ
.

Then

dTV

(
Sn, CNB(n, p, Q)

) ¬ min
{

1
2

( n∑

j=1

βj
n

j!

)
, 1

}
(3.20)

¬ min {0.911βn, 1},(3.21)

where λ2 =
∑n

i=1 p2
i , and βn = 4

(
λ− λ2/(n + λ)

)
.

P r o o f. Using part (ii) of Lemma 3.1, we obtain

(3.22)
n∑

i=1

‖LiCNB(n/j, p, Q)‖

¬ 2
( n∑

i=1

pi

(
1− pi

n + λ

)
+

n∑

k=1

pk

(
1− pk

n + λ

))
= 4

(
λ− λ2

n + λ

)
= βn.

Using (3.14) and (3.22), we get

‖L(Sn)− CNB(n, p, Q)‖ ¬
n∑

j=1

1
j!

( n∑

i=1

‖LiCNB(n/j, p, Q)‖)j(3.23)

¬
n∑

j=1

βj
n

j!
,

and hence (3.20) follows.
From part (i) of Lemma 3.1 we infer that

dTV

(
Sn, CNB(n, p,Q)

) ¬ min{f(βn), 1},

where

f(x) =
1
2

∞∑

j=1

xj

j!
=

ex − 1
2

.

Let x0 = ln(3). Then f(x) is increasing, f(x0) = 1, and f(x) ¬ x/x0 for x ∈
(0, x0). Hence, min{f(x), 1} ¬ min{x/x0, 1}, and so (3.21) follows. ¥
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3.6. Approximation by a finite signed measure. We consider here the approx-
imation of the distribution of the sum Sn by a finite signed measure defined by

W :=
(
δ0 −

n∑

i=1

pi(Qi − δ0)
)
CNB(n, p, Q),(3.24)

which is a variant of CNB(n, p, Q) and has the property that W (R) = 1. The
choice of this measure is motivated by the expansion of Li, defined in (3.13), and
to remove the first term in the expansion of L(Sn)− CNB(n, p,Q).

THEOREM 3.4. Let the assumptions of Theorem 3.3 hold, and W be as de-
fined in (3.24). Then

dTV (Sn, W ) ¬ min
{

1
2

(
βn

2
+

n∑

j=2

βj
n

j!

)
, 1

}
(3.25)

¬ min{0.775βn, 1}.(3.26)

P r o o f. Consider first

(3.27) ‖L(Sn)−W‖

=
∥∥L(Sn)− CNB(n, p, Q)−

n∑

i=1

pi(Qi − δ0)CNB(n, p, Q)
∥∥

=
∥∥ n∑

j=1

∑

1¬i1<...<ij¬n

j∏
s=1

(
LisCNB(n/j, p, Q)

)

−
n∑

j=1

pj(Qj − δ0)CNB(n, p,Q)
∥∥,

using (3.12). Writing the term corresponding to j = 1 separately, we get

‖L(Sn)−W‖ =
∥∥ n∑

i=1

(
Li − pi(Qi − δ0)

)
CNB(n, p,Q)

+
n∑

j=2

∑

1¬i1<...<ij¬n

j∏
s=1

(
LisCNB(n/j, p, Q)

)∥∥

¬
n∑

i=1

∥∥(
Li − pi(Qi − δ0)

)
CNB(n, p, Q)

∥∥

+
n∑

j=2

1
j!

( n∑

i=1

‖LiCNB(n/j, p, Q)‖)j
.

(3.28)
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Since

Li − pi(Qi − δ0) = −(
δ0 + pi(Qi − δ0)

) n∑

j=1

pj

n
(Qj − δ0),

using Lemma 3.1 (i), we get

∥∥(
Li − pi(Qi − δ0)

)
CNB(n, p, Q)

∥∥ ¬
n∑

j=1

pj

n
‖(Qj − δ0)CNB(n, p, Q)‖

¬ 2
n

n∑

j=1

(
pj −

p2
j

n + λ

)
.

Hence,

∥∥ n∑

i=1

(
Li − pi(Qi − δ0)

)
CNB(n, p, Q)

∥∥ ¬ 2
(

λ +
λ2

n + λ

)
=

βn

2
.

Therefore,

‖L(Sn)−W‖ ¬ βn

2
+

n∑

j=2

βj
n

j!
,(3.29)

where βn is as defined in (3.22). Since W (R) = 1 and ‖L(Sn) −W‖ ¬ 2, the
result in (3.25) follows.

To prove (3.26), note that

dTV (Sn,W ) ¬ min{g(βn), 1}, where g(x) =
x

4
+

1
2

∞∑

j=2

xj

j!
.

Note also that min{g(βn), 1} ¬ βn/x0, where x0 ∈ (0,∞) is the unique solution
of g(x) = 1. Numerically, it can be seen that 1.29 < x0 < 1.3. Therefore,

dTV

(L(Sn),W
) ¬ min{0.775βn, 1}.

This proves the theorem. ¥

REMARK 3.4. Comparing the practical estimates (3.21) and (3.26), we note
that the approximation by a finite signed measure improves the constant of approx-
imation.

4. SOME SPECIAL CASES

In this section, let Sn be defined as in (3.9) and we assume that for every i,
1 ¬ i ¬ n, there exists a probability distribution {qi,j} on N (i.e.,

∑∞
j=1 qi,j = 1)
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so that Qi is a mixture of {Uj}, a sequence of probability measures concentrated
on R\{0}. That is,

Qi =
∞∑

j=1

qi,jUj .(4.1)

For instance, qi,j = δi,j , the Kronecker delta, and Uj = Qj corresponds to the
trivial case. Another example due to Roos [20] is the following:

Let {Bj}j­1be a partition of R\{0}. Assume P (Xi ∈ · |Xi ∈ Bj) = Uj is
the same for all Xi, 1 ¬ i ¬ n. Then

(4.2) Qi(·) =
∞∑

j=1

P (Xi ∈ Bj |Xi 6= 0)P (Xi ∈ · |Xi ∈ Bj) =
∞∑

j=1

qi,jUj ,

where qi,j = P (Xi ∈ Bj |Xi 6= 0).
We now require the following lemma.

LEMMA 4.1. Let Q =
∑n

i=1 piQi/λ, where Qi is of the form in (4.1), and
λ =

∑n
i=1 pi. Then for any r > 0 we have

‖(Ul − δ0)CNB(r, p,Q)‖ ¬ 2(1− qql)1∧r,(4.3)

‖LiCNB(r, p,Q)‖ ¬ 2pi

∞∑

l=1

qi,l(1− qql)1∧r(4.4)

+ 2
n∑

j=1

pj

n

∞∑

m=1

qj,m(1− qqm)1∧r,

where ql =
∑n

i=1 piqi,l/λ and q = λ/(n + λ).

P r o o f. The proof of the lemma follows along the lines similar to those of
Lemma 3.1, except that we now choose R1 = qlUl and R2 =

∑∞
t=1, t6=l qtUt. ¥

THEOREM 4.1. Assume the conditions of Lemma 4.1 hold. Let

ql =
n∑

i=1

piqi,l/λ and q =
λ

n + λ
.

Then

dTV

(
Sn, CNB(n, p, Q)

) ¬ min
{

1
2

n∑

j=1

ζj

j!
, 1

}
(4.5)

¬ min {0.911ζ, 1} ,(4.6)

where ζ = 4λ
(
1− q

∑∞
l=1 q2

l

)
.
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P r o o f. The result essentially follows from Lemma 4.1 and the arguments
given in the proof of Theorem 3.3. Note that from (4.3) and (4.4), we have

n∑

i=1

‖LiCNB(n/j, p, Q)‖ ¬ 4
∞∑

l=1

n∑

i=1

piqi,l(1− qql)

= 4λ

(
1− λ

n + λ

∞∑

l=1

q2
l

)
= ζ.

The practical estimate in (4.6) also follows in a similar manner. ¥

Next, we present an analogous result to Theorem 3.4 for the case under con-
sideration, and the proof is omitted.

THEOREM 4.2. Let W be the signed measure as defined in (3.24). Also, let Q
and Qi be defined in (3.10) and (4.1), respectively. Then

dTV (Sn,W ) ¬ min
{

1
2

(
ζ

2
+

n∑

j=2

ζj

j!

)
, 1

}
(4.7)

¬ min{0.775ζ, 1},(4.8)

where ζ = 4λ
(
1− q

∑∞
l=1 q2

l

)
.

Next, as applications of the above results, we discuss two examples where
Qi =

∑∞
j=1 qi,jUj exists in discrete and continuous cases. Also, we analyze the

conditions under which the bounds are optimal.

EXAMPLE 4.1 (Discrete case). Let L(Yi) = Qi ∼ Ge(ηi), 1 ¬ i ¬ n, the
geometric distribution with probability distribution (a number of trials for the first
success)

P (Yi = k) = (1− ηi)k−1ηi, k = 1, 2, . . .

Let Sn =
∑n

j=1 Xj , where L(Xi) = δ0 + pi

(L(Yi) − δ0

)
and pi = P (Xi 6= 0).

Our aim is to approximate Sn =
∑n

j=1 Xj to CNB(n, p, Q), where p and Q are
as defined in (3.11) and (3.10). Let now

η > ηmax = max
1¬i¬n

ηi and qi,j = (1− bi)j−1bi for j ­ 1,

where bi = ηi/η. Choose Uj = NB(j, η) with probability distribution

Uj(x) =
(

x− 1
j − 1

)
ηj(1− η)x−j for x = j, j + 1, . . .
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Then it can be easily seen that Qi =
∑∞

j=1 qi,jUj . Using now (4.6), we get

dTV

(
Sn, CNB(n, p, Q)

)

¬ min
{
3.65λ

(
1− q

∞∑

l=1

q2
l

)
, 1

}

= min
{

3.65λ

(
1− λ

n + λ

∞∑

l=1

(
1
λ

n∑

i=1

pi(1− ηi/η)l−1ηi/η

)2)
, 1

}

¬ min
{

3.65λ

(
1− 1

(n + λ)λ

∞∑

l=1

n∑

i=1

p2
i (η − ηi)2(l−1)η2

i

η2l

)
, 1

}

= min
{

3.65λ

(
1− 1

(n + λ)λ

n∑

i=1

p2
i

(
ηi

2η − ηi

))
, 1

}
.

Note that the above bound is decreasing in η, and so attains the minimum when
η = ηmax.

EXAMPLE 4.2 (Continuous case). Let Qi ∼ E(ti), the exponential distribu-
tion with density

fQi(x) =
{

tie
−tix for x > 0,

0 otherwise,

and t > max1¬i¬n ti. Let qi,j = (1− bi)j−1bi, where bi = ti/t, and Uj ∼ G(t, j),
the gamma distribution with density

fUj (x|t, j) =





tj

(j − 1)!
e−txxj−1 for x > 0,

0 otherwise.

Then, it follows that Qi =
∑∞

j=1 qi,jUj . Consequently, from (4.6) we get

dTV

(
Sn, CNB(n, p, Q)

)

¬ min
{

3.65λ
(

1− λ

n + λ

∞∑

l=1

q2
l

)
, 1

}

¬ min
{

3.65λ
(

1− 1
(n + λ)λ

n∑

i=1

p2
i

(
ti

2t− ti

))
, 1

}
,

following the arguments in Example 4.1.

Finally, we point out an application of our results to the individual risk model,
which is widely used in life and health insurance. Consider a portfolio with n
policies with associated non-negative risks, say, X1, . . . , Xn. Assume that the risk
i produces a claim with probability pi, and let Qi denote its conditional claim
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amount. Then Sn =
∑n

j=1 Xj denotes the total claim in the individual model. In
general, the distribution of Sn is complicated. When all pi’s are small, one may
approximate L(Sn) to a suitable compound distribution (see Roos [20]). If some
of the pi’s are not small, it is natural to approximate L(Sn) to

CNB(r, p, Q) =
∞∑

k=0

πk(r, p)Qk,(4.9)

where

πk(r, p) =
(

r + k − 1
k

)
prqk for k = 0, 1, 2, . . . ,

and

Q =
1
λ

n∑

i=1

piQi =
∞∑

l=1

qlUl.

Observe that (4.9) is indeed a random sum, and represents the total claim amount
in the collective risk model (Grandell [13] or Mikosch [17]). Our results in Theo-
rems 3.3 and 4.1 are helpful to obtain the error estimates in such cases.
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