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Abstract. We study open multiclass queueing networks with renewal
arrival streams and general service time distributions. Upon arrival to the
network, customers from each class are assigned a random deadline drawn
from a distribution associated with this class. We show that preemptive sub-
critical EDF networks with fixed customer routes are stable. We also prove
that a broad class of (not necessarily subcritical) networks with reneging
and Markovian routing, including EDF, FIFO, LIFO, SRPT, fixed priorities
and processor sharing, is stable.
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1. INTRODUCTION

A principal question in the theory of multiclass queueing networks is whether
a given network is stable, i.e., the corresponding Markov process is positive Harris
recurrent. The intuitive meaning of network stability is that the system performs
well under reasonable workload: the queue lengths do not grow linearly with time
and do not oscillate “wildly”, there is no mutual blocking and forced idleness of the
servers when work is present in the system. Thus, stability of a network is a basic
indicator of its proper design. It appears that there is no general criterion for this
behavior; in particular, it is known that the usual necessary traffic condition that
ρj < 1 at each station is not sufficient; see, e.g., [3], [4], [19]. On the positive side,
the condition ρj < 1 for all j is sufficient for generalized Jackson networks [16]
and multiclass networks with some disciplines, including first-in-first-out (FIFO)
in networks of Kelly type [5], head-of-the-line proportional processor sharing [6],
first-buffer-first-served and last-buffer-first-served [8], [9].

Dai [8], generalizing and systematizing the earlier work of Rybko and Stolyar
[19], provided a general framework for proving such stability results. Its main idea
is to reduce the problem to showing stability of the corresponding fluid model, a de-
terministic analog of the network under consideration. This approach has been ap-
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plied to various queueing systems. The result most relevant to this paper is stability
of multiclass earliest-deadline-first (EDF) networks without preemption. The EDF
discipline, also called earliest-due-date-first-served (EDDFS), is the rule where
each customer has a deadline, assigned upon arrival at the network and maintained
until departure, and a customer with the earliest deadline is selected for service
at each station of the network. Bramson [7] showed that the fluid limits of the
performance processes for a non-preemptive EDF network with ρj < 1 for all j
satisfy the first-in-system-first-out (FISFO) fluid model equations. He then proved
that a sufficiently rich class of FISFO fluid models is stable. This, by a variation of
Theorem 4.2 of Dai [8], implies stability of the network under consideration.

It is natural to ask whether this stability result remains valid for EDF networks
with preemption. As observed in Bramson [7], this problem is more difficult and
the analysis for the non-preemptive case does not generalize immediately to the
preemptive setting. The main reason for this is that the number of partially served
customers in a preemptive EDF system is unbounded, so it is not clear that the
number of departed customers from a given class is asymptotically proportional
to the service time devoted by the server to this class. This difficulty increases if
we consider initial conditions with unbounded numbers of residual service times,
which are natural for preemptive service protocols.

In this paper we show how to overcome this difficulty under the assumption
that the customer routes in the network are fixed. We consider this to be a mild
assumption since it is satisfied by many EDF networks of practical interest, aris-
ing, e.g., in manufacturing (see [13], [21]). Moreover, known examples of unstable
systems with fixed customer routes (see, e.g., [3], [4], [19]) indicate that stability
theory for such (in fact, even acyclic) systems is already interesting. The main idea
of the argument is based on the observation that because the initial lead time distri-
butions disappear in the limit, the asymptotic behavior of a preemptive EDF system
does not differ from the behavior of the corresponding FISFO system. More pre-
cisely, after a time large enough to process all the initial customers to completion at
every station, the fluid limits for a preemptive EDF system satisfy the FISFO fluid
model equations introduced in Bramson [7]. Once the convergence to an FISFO
fluid model is established, stability of the latter models proved in Bramson [7]
and an argument similar to the proof of Theorem 4.2 in Dai [8] imply stability of
preemptive EDF systems.

In spite of the theoretical and practical importance of stochastic EDF queue-
ing networks, there are still few mathematically rigorous results for such systems.
Apart from Bramson’s work [7] recalled above, Doytchinov et al. [11] provided a
diffusion approximation for measure-valued state descriptors of preemptive EDF
GI/G/1 queues. Their result has been generalized by Yeung and Lehoczky [23]
to preemptive EDF feedforward networks. A further generalization to the case of
acyclic networks, with or without preemption, was given by Kruk et al. [14]. How-
ever, the latter result rests on a strong assumption implying the existence of a heavy
traffic limit for the corresponding real-valued workload process. Currently, we are
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able to verify this assumption only in a number of special cases. Our stability result
is a step forward in a process of filling this gap.

It turns out that some of the techniques developed for the EDF stability proofs
can be used to show stability of general queueing networks with reneging. In fact,
the analysis of the latter networks is much easier, since in this case a more di-
rect approach is possible. In particular, there is no need to use fluid models, and
consequently to show convergence to such models and their stability. Existing sta-
bility results for models with impatient customers treat the case of a single server
queue (see [1], [15], [20], [22] and the references given therein) and feedforward
networks [22]. Our analysis allows for Markovian routing of customers and for a
broad range of service protocols, including EDF (preemptive or not), FIFO, LIFO
(last-in-first-out), SRPT (shortest-remaining-processing-time-first), fixed priorities
and processor sharing. Moreover, we do not require any condition on the traffic
intensities ρj . Thus, as it should be expected, customer impatience is a universal
stabilizing mechanism.

To our knowledge, the theorems presented in this paper are the first stability re-
sults for queueing systems with unbounded numbers of partially served customers.
In particular, our stability theorem for preemptive EDF networks is the first appli-
cation of the methodology of Dai [8] to such systems.

The paper is organized as follows. Section 2 describes the models, provides
background information on positive Harris recurrence of Markov processes and ad-
justs it to our setting. In Section 3, we provide the formulation of the main results.
Section 4 contains an auxiliary lead time estimate. In Section 5, we present the
preemptive EDF queueing network equations and show that the fluid limits of the
corresponding (properly shifted) performance processes satisfy the FISFO fluid
model equations. In Section 6, we provide the proof of the stability theorem for
preemptive EDF networks. The proof of the stability theorem for networks with
reneging is contained in Section 7. Proofs of two technical auxiliary results are
relegated to the Appendix.

2. TERMINOLOGY AND BACKGROUND

2.1. Notation. The following notation will be used throughout the paper. Let
R denote the set of real numbers and let R+ = [0,∞). For a, b ∈ R, we write
a ∨ b for the maximum of a and b, a ∧ b for the minimum of a and b, and a+

for a ∨ 0. We also write bac for the largest integer less than or equal to a. For a
vector a = (a1, . . . , an) ∈ Rn, let |a| , ∑n

i=1 |ai|. All vectors in the paper are to
be interpreted as column vectors unless indicated otherwise. For a finite set B, |B|
denotes the cardinality of B. The Borel σ-field on a topological space Y will be
denoted by B(Y ). Finally, the space of right-continuous real-valued functions with
left limits on [0,∞) will be denoted by D[0,∞).
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2.2. The models.

2.2.1. Open queueing networks with Markovian routing. We consider general
open queueing networks with Markovian routing. Such a network consists of J
single server stations, indexed by j = 1, . . . , J . Customers are members of classes,
or buffers, k ∈ K, where K is a finite set of indices, with a customer of buffer k
being served at a unique server j, written k ∈ C̄(j). The set of buffers with external
arrival processes will be denoted by E . We assume that K , |E| > 0 and

(2.1) E = {1, . . . , K}.
Upon being served at j, a customer of buffer k immediately becomes a customer
of buffer k′ with probability pk,k′ , independently of its past history. The routing
matrix P = (pk,k′) is assumed to be transient, i.e., such that the matrix

Θ , (I − P ′)−1 = I + P ′ + (P ′)2 + . . .

exists, where ′ denotes the transpose.

2.2.2. Open networks with fixed customer routes. An important special case of
the structure described above arises when pk,k′ ∈ {0, 1} for each k,k′ ∈ K, i.e.,
the network routing is deterministic. We now introduce additional notation and
terminology for this case.

The network is populated by K customer types, indexed by k = 1, . . . , K.
Customers of type k arrive to the network and move through it according to a fixed
route, until they eventually exit the system. Different customer types may visit
stations in different orders and some servers may be visited by type k customers
more than once, i.e., the system is not necessarily feedforward or acyclic. We de-
fine the path of type k customers as the sequence of servers they encounter along
their way through the network and denote it by P(k) , (jk,1, jk,2, . . . , jk,m(k)).
In particular, type k customers enter the system at station jk,1 and leave it through
station jk,m(k). If j is a member of the list of station indices in P(k), we shall write
j ∈ P(k). For k = 1, . . . ,K, j = 1, . . . , J and i = 1, . . . , m(k), let

b(k, j, i) , #[i′ ∈ {1, . . . , i} : jk,i′ = j].

In other words, b(k, j, i) is the number of occurrences of station j among the first
i steps along the route of type k customers. In particular, b̄(k, j) , b

(
k, j, m(k)

)
is the number of times the station index j appears in P(k). For j = 1, . . . , J , we
define

C(j) , {indices of customer types which visit station j} .

We introduce multi-indices of the form k = (k, j, b), indexing the b-th visit of type
k customers at station j, where k = 1, . . . , K, j ∈ P(k), b = 1, . . . , b̄(k, j). The
set of all such multi-indices (which will be identified with the customer classes or
buffers introduced in Section 2.2.1) will be denoted by K. To make the indexing
of classes with external arrival streams uniform throughout the paper, we denote
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a multi-index (k, jk,1, 1) ∈ E , k = 1, . . . , K, simply by k, so that (2.1) holds. For
j = 1, . . . , J , let

C̄(j) , {(k, j, b) ∈ K : k ∈ C(j), b = 1, . . . , b̄(k, j)}.
The routing matrix P = (pk,k′) corresponding to this network topology is given
by pk,k′ , 1 if k =

(
k, jk,i, b(k, jk,i, i)

)
, k′ =

(
k, jk,i+1, b(k, jk,i+1, i + 1)

)
for

some k ∈ {1, . . . , K}, i ∈ {1, . . . , m(k)− 1}, and pk,k′ , 0 otherwise. Since the
network is open and the customer routes are fixed, it is clear that the matrix P is
transient.

2.2.3. Stochastic primitives. We will now define the stochastic primitives for
the models described in Sections 2.2.1 and 2.2.2. The customer interarrival times
are a sequence of strictly positive, i.i.d. random variables uk(i), i = 1, 2, . . . ,
where the subscript k ∈ E indicates the customer class. We assume that for k ∈ E

Euk(1) <∞,(2.2)

P
(
uk(1) ­ x

)
> 0 for all x > 0,(2.3)

and for some nk > 0 and some nonnegative Borel function fk with
∞∫
0

fk(x)dx > 0,

we have

(2.4) P
(
uk(1) + . . . + uk(nk) ∈ dx

) ­ fk(x)dx.

In other words, the interarrival times are integrable, unbounded and spread out.
The residual interarrival times uk(0), k = 1, . . . , K, are assigned fixed nonnegative
values. The arrival time of the n-th customer of class k to the system is given by
Uk(n) =

∑n−1
i=0 uk(i), n = 1, 2, . . . The service times of buffer k customers are a

sequence of strictly positive, i.i.d. random variables vk(i), i = 1, 2, . . . , where the
index i denotes the order of arrival of customers to the buffer. We assume that for
all k ∈ K

(2.5) mk , E vk(1) <∞.

The arrival rates αk, k ∈ K, are defined by

(2.6) αk ,
{

1/Euk(1) if k ∈ E ,
0 otherwise.

We put α = (αk)k∈K. We define the total arrival rate vector λ = Θα. Next, we
define the traffic intensity at station j as

(2.7) ρj =
∑

k∈C̄(j)
mkλk.

When ρj < 1 for each j, the network is called strictly subcritical.
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Customers entering the network through the buffer k ∈ E at times Uk(i) have
initial lead times `k(i), i = 1, 2, . . ., which are mutually independent nonnega-
tive i.i.d. random variables. The deadline of such a customer is given by ∆k(i) =
Uk(i) + `k(i). We assume that for k ∈ E
(2.8) E `k(1) <∞.

We assume also that the sequences {uk(i)}∞i=1, k ∈ E , and {vk(i)}∞i=1, k ∈ K, are
mutually independent. Moreover, we assume that the sequences {`k(i)}∞i=1, k ∈ E ,
and {vk(i)}∞i=1, k ∈ K, are mutually independent.

For each k ∈ K, the initial condition specifies Qk(0), the number of initial
customers present at the buffer k at time 0, as well as their residual service times
and initial lead times, which are denoted by ṽk(i) and ˜̀

k(i), i = 1, . . . , Qk(0),
respectively. We assume that Qk(0) are fixed nonnegative integers, ṽk(i) are fixed
positive numbers, and ˜̀

k(i) are fixed real numbers. The deadlines of the initial
customers are given by ∆̃k(i) = ˜̀

k(i).

2.2.4. Lead times, service disciplines. To determine whether customers meet
their timing requirements, one must keep track of each customer’s lead time, where

lead time = initial lead time − time elapsed since arrival

for customers coming to the system after time zero, and

lead time = initial lead time − current time

for initial customers.
In this paper, two types of queueing networks will be considered. The first one

is a system with general Markovian routing (see Section 2.2.1) and stochastic prim-
itives defined in Section 2.2.3, in which the customers are impatient: they renege
(i.e., leave the network) immediately after their deadlines elapse. Assumption 2.1
on the service protocol considered in this case will be given in Section 2.3. Now
we only mention that this assumption is very mild, allowing for a broad class of
service disciplines. Here we assume that ˜̀

k(i) ­ 0, since customers with negative
lead times are never present at the network.

The other network type analyzed in this paper can be characterized by fixed
customer routes (see Section 2.2.2), stochastic primitives defined in Section 2.2.3
and the EDF service discipline. That is, the customer with the shortest remaining
lead time, regardless of class, is selected for service at each station. Preemption oc-
curs when a customer more urgent than the customer in service arrives (we assume
preempt-resume). There is no set up, switch-over or other type of overhead. Here
we assume that the customers are patient: they stay in the system until served to
completion, even if they get late, i.e., their lead times become negative. In this case,
the (natural) assumption that `k(i) ­ 0 was added only to simplify the exposition
of the proofs. All our results concerning EDF networks without reneging are valid
without this condition as long as `k(i) are integrable.



Stability of real-time networks 185

2.3. Markov process background. In the real-time queueing systems under
consideration, the individual customer lead times or some equivalent information
must be kept to determine customer priorities in the case of the EDF service disci-
pline and to identify late customers leaving a reneging system. Similarly, to model
protocols with preemption or simultaneous service of multiple customers, it is nec-
essary to store the residual service time of every task, i.e., the current remaining
amount of processing time required to fulfill its service time requirement. Since
the number of customers present in the system at a given time is unbounded, it is
necessary to model its evolution in an infinitely dimensional state space. In what
follows, we use lists of infinite length to construct the state descriptor. An alter-
native approach utilizing finite Borel measures can be found, e.g., in [11], [14]
and [23].

Let d = |K| and let S = (R+ × R)∞. Let Ω = Sd × RK
+ be the state space.

Under the product topology, Sd and Ω are Polish spaces. The state of the process
at any time is given by a point

(2.9) x = (hk,k ∈ K, rk, k ∈ E) ∈ Ω,

where for k ∈ K, hk describes all customers present at buffer k at this time so that
each of them is listed in terms of his residual service time and lead time, and rk is
the residual interarrival time for class k ∈ E . We assume that the customers in hk

are listed in the order of their arrival to the buffer, ties are broken in an arbitrary
manner and the empty spaces on the list hk (i.e., not corresponding to any customer
present in the buffer) are positioned after all the listed customers and they are filled
with zeros. Let 0 denote the element of Sd describing the empty system, i.e., with
all coordinates equal to the sequence

(
(0, 0), (0, 0), . . .

)
. Let q = (qk)k∈K and

w = (wk)k∈K, where qk is the number of customers listed in hk and wk is the
sum of their residual service times. Let r = (rk)k∈E and let ` be the greatest lead
time. For x ∈ Ω, let |x| = |q|+ |w|+ |r|+ `+ be the “norm” of x.

Fix one of the queueing systems described in Section 2.2. The process describ-
ing the evolution of this system is denoted by X =

(
X(t), t ­ 0

)
, where

(2.10) X(t) =
(
H(t), R(t)

)
=

(
Hk(t),k ∈ K, Rk(t), k ∈ E

)

is the state of the system at time t. By definition, the process X has right-continuous
sample paths. In the case of a preemptive EDF system without reneging, it is easy
to see that X is a Markov process. In the case of networks with reneging and
Markovian routing, we make the following assumption:

ASSUMPTION 2.1. The process X defined by (2.10) has the Markov property.

Assumption 2.1 holds for a broad class of service disciplines with reneging,
e.g., EDF (preemptive or not), FIFO, LIFO, SRPT, fixed priorities and processor
sharing.
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The evolution of the process X between arrivals and departures is determinis-
tic. Thus, X is a piecewise-deterministic Markov (PDM) process, so it is actually
strong Markov (see [10]).

A Markov process X on the state space Ω is Harris recurrent if there exists
a σ-finite measure ν on B(Ω) such that whenever A ∈ B(Ω), ν(A) > 0, we have
Px(τA <∞) = 1 for all x ∈ Ω, where τA = inf{t ­ 0 : X(t) ∈ A}. It is known
that Harris recurrence implies the existence of a unique (up to a multiplicative
constant) invariant measure; see, e.g., [12]. If this measure is finite, X is called
positive Harris recurrent.

Let P t(x,A), x ∈ Ω, A ∈ B(Ω), t ­ 0, be the transition probability of X , i.e.,
P t(x,A) = Px

(
X(t) ∈ A

)
. A nonempty set A ∈ B(Ω) is called petite if for some

nontrivial measure ν on B(Ω) and some probability distribution p on (0,∞)

ν(B) ¬
∞∫
0

P t(x, B) p(dt) for all x ∈ A, B ∈ B(Ω).

PROPOSITION 2.1 ([17], Theorem 4.1). Let A be a closed petite set, suppose
that Px(τA <∞) = 1 for each x ∈ Ω and that for some δ > 0

(2.11) sup
x∈A

Ex[τA(δ)] <∞,

where τA(δ) = inf{t ­ δ : X(t) ∈ A}. Then X is positive Harris recurrent.

LEMMA 2.1. Under the assumptions (2.3) and (2.4), for any ζ > 0 it follows
that A = {x ∈ Ω : |x| ¬ ζ} is a closed petite set.

This lemma is analogous to Lemma 3.2 in [8] and it can be proved in a similar
way.

The following proposition, which is very useful in stability theory for queue-
ing networks, reduces the problem of proving the positive Harris recurrence of a
Markov process to checking the condition (2.12) on the asymptotic behavior of this
process as the initial condition gets large. The latter condition can be verified either
directly or with the use of suitable fluid models.

PROPOSITION 2.2. If there exists δ > 0 such that

(2.12) lim
|x|→∞

1
|x|Ex

∣∣X(δ|x|)∣∣ = 0,

then (2.11) holds for A = {x ∈ Ω : |x| ¬ ζ} with some ζ > 0. Consequently, X is
positive Harris recurrent.

The proof of this proposition is the same as the proof of Theorem 3.1 in [8]
(see also the proof of Theorem 2.1 (ii) in [18]).
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3. MAIN RESULTS

Recall that a queueing network is stable when the underlying Markov process
is positive Harris recurrent. The following theorems give the main results of this
paper.

THEOREM 3.1. All strictly subcritical EDF queueing networks with preemp-
tion and fixed customer routes which satisfy (2.2)–(2.5) and (2.8) are stable.

THEOREM 3.2. All queueing networks with reneging satisfying (2.2)–(2.5),
(2.8) and Assumption 2.1 are stable.

Let us stress that in Theorem 3.2 we do not require that the network be strictly
subcritical.

4. BASIC LEAD TIME ESTIMATE

Let k ∈ E , t ­ 0, and let x ∈ Ω be the initial state of the network. Let Nx
k (t) =

max{n ­ 0 : Uk(n) ¬ t}. Let G be the set of elementary events ω for which

lim
N→∞

1
N

N∑

i=1

uk(i)(ω) = Euk(1), k ∈ E ,(4.1)

lim
N→∞

1
N

N∑

i=1

vk(i)(ω) = mk, k ∈ K,(4.2)

lim
N→∞

1
N

N∑

i=1

`k(i)(ω) = E `k(1), k ∈ E .(4.3)

By (2.2), (2.5), (2.8) and the strong law of large numbers, P(G) = 1.
We consider sequences of points xn = (qn, rn), qn ∈ Sd, rn ∈ RK

+ , such that

(4.4) lim
n→∞ |xn| =∞, lim

n→∞
rn

|xn| = r, lim
n→∞

`+
n

|xn| = `

for some r = (r1, . . . , rk) ∈ RK
+ , ` ∈ [0, 1].

LEMMA 4.1. Let T0 > 0. Assume that a sequence xn satisfies (4.4) and let

(4.5) Ln = max
k∈E

max
1¬i¬Nxn

k (|xn|T0)
`k(i).

Then limn→∞ Ln(ω)/|xn| = 0 for every ω ∈ G.

P r o o f. Fix ω ∈ G. Our aim is to show that for k ∈ E

(4.6)
1
|xn| max

1¬i¬Nxn
k (|xn|T0)(ω)

`k(i)(ω)→ 0.
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By (4.1) and (4.4), it follows that on the set G

(4.7)
1
|xn|N

xn
k (|xn|t)→ αk(t− rk)+

uniformly on compacts (u.o.c.) in t (see Lemma 4.2 in [8]). Therefore, to prove
(4.6), it suffices to verify that

(4.8)
1
|xn| max

1¬i¬|xn|T ′
`k(i)(ω)→ 0,

where T ′ = αkT0 + 1. By (4.3) and the functional strong law of large numbers,
the process

Mn
k (t) =

1
|xn|

b|xn|tc∑

i=1

(
`k(i)− E`k(i)

)

converges to zero u.o.c. in t ­ 0 on the set G. Hence,

1
|xn| max

1¬i¬|xn|T ′
`k(i)(ω) ¬ 1

|xn|E`k(1) + jT ′
(
Mn

k (ω)
)→ 0,

where for f ∈ D[0,∞), jT ′(f) = sup0¬t¬T ′ |f(t)− f(t−)|, and (4.8) follows. ¥

5. PREEMPTIVE EDF NETWORK EQUATIONS AND FLUID MODELS

In this section we analyze fluid limits for preemptive EDF queueing networks
with fixed customer routes described in Sections 2.2.2, 2.2.3 and 2.2.4.

Let E(t, s) =
(
Ek(t, s)

)
k∈K, t ­ 0, s ∈ R, denote the external arrival pro-

cess defined as follows. If k = (k, jk,1, 1) for some k, then Ek(t, s) is equal to
the number of external arrivals to the system (or, equivalently, to station jk,1) by
time t of type k customers with lead times at time t less than or equal to s − t;
otherwise Ek(t, s) ≡ 0. Let k = (k, j, b) ∈ K, t ­ 0 and s ∈ R, let Zk(t, s) de-
note the number of type k customers who are visiting station j for the b-th time
along their route at time t with lead times at time t less than or equal to s − t.
Let Z(t, s) =

(
Zk(t, s)

)
k∈K. Similarly, the vectors A(t, s) =

(
Ak(t, s)

)
k∈K,

D(t, s) =
(
Dk(t, s)

)
k∈K, T (t, s) =

(
Tk(t, s)

)
k∈K denote the number of arrivals

and departures, and the cumulative service time by time t corresponding to each
class k of customers with lead times at time t less than or equal to s − t. Let
Yj(t, s), j = 1, . . . , J , denote the cumulative idleness by time t at station j with
regard to service of customers with lead times at time t less than or equal to s− t
and let Y (t, s) =

(
Yj(t, s)

)
j=1,...,J

. For k = (k, j, b) ∈ K, t, t′ ­ 0 and s ∈ R, let
Sk(t′, t, s) denote the number of service completions at station j of type k cus-
tomers visiting this station for the b-th time along their route and having lead times
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at time t less than or equal to s − t, by the time the station j has spent t′ units of
time serving these customers. For t ­ 0 and s ∈ R, let

X(t, s) =
(
A(t, s), D(t, s), T (t, s), Y (t, s), Z(t, s)

)
.

Let Q(t) =
(
Qk(t)

)
k∈K = lims→∞ Z(t, s) be the queue length vector and let

W (t) =
(
Wk(t)

)
k∈K denote the unfinished work in the system, i.e., Wk(t) is the

sum of the residual service times of customers in buffer k at time t. We will some-
times use a superscript x ∈ Ω such as in Xx(t, s) to indicate that the process starts
at state x. For c > 0, cX(t, s) denotes componentwise multiplication.

The process X(t, s) satisfies the following network equations:

A(t, s) = E(t, s) + P ′D(t, s);(5.1)
Z(t, s) = Z(0, s) + A(t, s)−D(t, s);(5.2)

Dk(t, s) = Sk

(
Tk(t, s), t, s

)
, k ∈ K;(5.3)

∑
k∈C̄(j) Tk(t, s) + Yj(t, s) = t, j = 1, . . . , J ;(5.4)

Yj(t, s) can only increase in t when
∑

k∈C̄(j) Zk(t, s) = 0, j = 1, . . . , J,(5.5)

valid for every t ­ 0 and s ∈ R.
The equation (5.5) means that Yj(t1, s) < Yj(t2, s) implies that

∑

k∈C̄(j)
Zk(t, s) = 0 for some t ∈ [t1, t2].

The equations (5.1)–(5.4) are general properties of queueing networks without
reneging and they do not depend on the service discipline under consideration.
The equation (5.5) is specific to preemptive EDF networks. Indeed, for any s, the
server idleness with regard to customers with lead times not greater than s− t can-
not increase at time t in the presence of such customers if and only if the server is
working under the preemptive EDF protocol.

It turns out that the deterministic analogs of the equations (5.1)–(5.5) are the
FISFO fluid model equations (see [7]):

A(t, s) = α(t ∧ s) + P ′D(t, s);(5.6)

Z(t, s) = Z(0, s) + A(t, s)−D(t, s);(5.7)

Dk(t, s) = Tk(t, s)/mk, k ∈ K;(5.8)
∑

k∈C̄(j) Tk(t, s) + Y j(t, s) = t, j = 1, . . . , J ;(5.9)

Y j(t, s) can only increase in t when
∑

k∈C̄(j)Zk(t, s)=0, j =1, . . . , J,(5.10)

where t, s ­ 0.
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By analogy with the processes A, D, T , Y , Z, we assume that A(·, s), D(·, s),
T (·, s), Y (·, s) are nondecreasing in each coordinate, A(0, s) = D(0, s) =
T (0, s) = 0 and Y (0, s) = 0 for s ­ 0. Similarly, we assume that every coordi-
nate of A(t, ·), D(t, ·), T (t, ·), −Y (t, ·), Z(t, ·) is nondecreasing for all t ­ 0 and
that Zk(t, s) ­ 0, k ∈ K. Let Q(t) = lims→∞ Z(t, s) and let

X(t, s) =
(
A(t, s),D(t, s), T (t, s), Y (t, s), Z(t, s)

)
.

As in the case of queueing networks, we say that a fluid model is strictly
subcritical if ρj < 1 for each j, where ρj is defined by (2.7). We also say that a
FISFO fluid model is stable if there exists c > 0 such that, for all solutions of the
equations (5.6)–(5.10), Q(t) = 0 for t ­ c|Q(0)|.

PROPOSITION 5.1. A strictly subcritical FISFO fluid model of a network with
fixed customer routes is stable.

This follows immediately from Theorem 2 of Bramson [7], because the sets
K1 = K andK2 = ∅ have all the properties required by this theorem. Alternatively,
we may takeK2 = {k0} andK1 = K−K2, where k0 =

(
1, j1,m(1), b̄(1, j1,m(1))

)
,

because
∑

k∈K2
mkλk = mk0λk0 ¬ ρj1,m(1)

< 1, which, by the remark before
Theorem 2 in Bramson [7], is sufficient for the theorem to hold.

LEMMA 5.1. Let xn satisfy (4.4) and let k = (k, j, b) ∈ K. On the set G,

(5.11)
1
|xn|E

xn
k (|xn|t, |xn|s)→ αk

(
(t ∧ s)− rk

)+

u.o.c. in t, s ­ 0.

P r o o f. Let k ∈ E . Fix T0 > 0. We claim that, for s ¬ t ¬ T0,

(5.12) Nxn
k

(
(|xn|s− Ln)+

) ¬ Exn
k (|xn|t, |xn|s) ¬ Nxn

k (|xn|s).

Indeed, if |xn|s < Ln, the first inequality in (5.12) is obvious. Assume that
|xn|s ­ Ln. At time |xn|t, the time since the arrival of a customer who has entered
the network by time (|xn|s − Ln)+ = |xn|s − Ln is at least |xn|(t − s) + Ln.
The initial lead time of this customer is bounded above by Ln, so his lead time at
time |xn|t is not greater than |xn|(s − t) and the first inequality in (5.12) holds.
Since `k(i) ­ 0 for all i, a customer with lead time at time |xn|t not greater than
|xn|(s− t) must have entered the network by time |xn|s. This explains the second
inequality in (5.12). Dividing (5.12) by |xn|, using (2.6), (4.4), (4.7), Lemma 4.1
and the fact that s ¬ t, we have

(5.13)
1
|xn|E

xn
k (|xn|t, |xn|s)→ αk

(
(t ∧ s)− rk

)+
.
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Now, let t < s ¬ T0. By (4.4) and Lemma 4.1, on the set G for n large enough,
Ln ¬ |xn|(s− t). For such n,

Exn
k (|xn|t, |xn|s) = Nxn

k (|xn|t) = Nxn
k

(|xn|(t ∧ s)
)
.

Dividing by |xn| and using (2.6), (4.4), (4.7), we again have (5.13). If k 6= k for
all k ∈ E , then Exn

k ≡ 0 and αk = 0. Thus, in any case, the convergence (5.11)
for any k ∈ K and fixed t, s holds true. Finally, since Exn

k (t, s) is nondecreasing
in both variables and the limit αk

(
(t ∧ s) − rk

)+ is continuous, it is not hard to
see that (5.11) is actually u.o.c. in t and s (see the proofs of Lemma 4.1 in [8] and
Proposition 3.4 in [11] for similar arguments). ¥

LEMMA 5.2. Let

(5.14) C = (1 + |α|) ∑

k∈K
mk + 3.

For every sequence xn in (4.4), there exist a set G1 ⊆ G with P(G1) = 1 and a
subsequence xη such that for ω ∈ G1 and η sufficiently large,

(5.15) V̄ xη(ω) ¬ C |xη|,

where V̄ xη is the departure time of the last initial customer from the network with
initial state xη.

P r o o f. Let a sequence xn satisfy (4.4). In a preemptive EDF network with
the initial state xn, the initial customers, together with customers arriving at the
network after time zero with deadlines not greater than `+

n , form a priority class,
i.e., as long as these customers are present at any station of the network, all the
service capacity of this station is devoted to them. Since the initial lead times of the
arriving customers are nonnegative, this priority class has at most |qn|+ |Nxn(`+

n )|
members. Let k ∈ K and let in1 , . . . , inpn

k
be the indices of the service times in

the sequence vk(i), i = 1, 2, . . ., corresponding to the priority customers in the
network with the initial state xn. We have pn

k ¬ |qn|+ |Nxn(`+
n )|, k ∈ K. Under

the EDF service discipline, the index i of the b-th arrival at station j of a customer
of class k is independent of vk(i), where k = (k, j, b). Thus,

(
vk(in1 ), . . . , vk(inpn

k
)
)

have the same distribution as
(
vk(1), . . . , vk(pn

k)
)
. In particular, the sum of the

service times of the priority customers in the network with the initial state xn,
which will be denoted by V xn , is bounded by the random variable with the same
distribution as

Ṽ xn = |wn|+
∑

k∈K

|qn|+|Nxn(`+n )|∑

i=1

vk(i) ¬ |xn|+
∑

k∈K

|xn|+|N0(|xn|)|∑

i=1

vk(i).
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By the assumptions (2.2), (2.5), (4.4), (5.14) and the weak law of large numbers,
we have

(
Ṽ xn − (C − 2)|xn|

)+ P−→ 0. Hence,
(
V xn − (C − 2)|xn|

)+ P−→ 0. By
Theorem 20.5 in [2], there exist a set G1 with P(G1) = 1 and a subsequence η

such that, for every ω ∈ G1, we have
(
V xη(ω) − (C − 2)|xη|

)+ → 0. Thus, for
ω ∈ G1 and η large enough,

(5.16) V xη(ω) ¬ (C − 1)|xη|.
Note that since all the priority customers arrive at the preemptive EDF system
with initial state xη by time `+

η , V xη + `+
η is the upper bound for the time by

which all the priority customers leave this system. Indeed, as long as the priority
customers are present at the network, at least one server works on these customers.
Consequently, by (5.16), for ω ∈ G1 and η sufficiently large, (5.15) holds. ¥

For t0 ­ 0, we introduce the time shift operator ∆t0 acting on the coordinates
of the process X as follows for t, s ­ 0:

∆t0A(t, s) = A(t + t0, s + t0)−A(t0, t0),
∆t0D(t, s) = D(t + t0, s + t0)−D(t0, t0),
∆t0T (t, s) = T (t + t0, s + t0)− T (t0, t0),
∆t0Y (t, s) = Y (t + t0, s + t0)− Y (t0, t0),
∆t0Z(t, s) = Z(t + t0, s + t0).

Let ∆t0X = (∆t0A, ∆t0D, ∆t0T, ∆t0Y,∆t0Z) and let ∆t0Q(t) = Q(t + t0) for
t ­ 0. Intuitively, the processes ∆t0X, ∆t0Q describe the dynamics of the queue-
ing system under consideration “restarted” at time t0.

The following proposition plays a crucial role in the proof of Theorem 3.1.
Its intuitive meaning is that, after a time large enough to process all the initial
customers to completion at every station, the fluid limits for a preemptive EDF
system satisfy the FISFO fluid model equations.

PROPOSITION 5.2. Let C be as in (5.14). For every sequence xn in (4.4), there
exist a set G′ ⊆ G with P(G′) = 1 and a subsequence xη such that, for each ω ∈
G′ and each subsequence xϑ of xη (possibly depending on ω), there exists a further
subsequence xζ of xϑ (depending on ω) on which ∆C|xζ |X

xζ (t|xζ |, s|xζ |)(ω)/|xζ |
converges u.o.c. in t and s and

(5.17) lim
n→∞∆C|xζ |X

xζ (t|xζ |, s|xζ |)(ω)/|xζ |

satisfies the FISFO fluid model equations (5.6)–(5.10).

The main idea of the proof of Proposition 5.2 is based on the observation that
because the initial lead time distributions disappear in the limit, the asymptotic be-
havior of a preemptive EDF system does not differ from the behavior of the corre-
sponding FISFO system. In particular, under fluid scaling the number of customers
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coming to the system in a small time interval is small, so the corresponding fluid
limits are continuous. Also, since the order of service does not differ significantly
from FISFO, the number of partially served customers at each station and the work
associated with them are negligible in the limit. The latter finding is analogous to
“crushing lemmas” from the papers on diffusion limits for EDF systems (see [11],
[14], [23]). The formal, technical proof of Proposition 5.2 has been relegated to the
Appendix.

6. PROOF OF THEOREM 3.1

To show Theorem 3.1 we will need the following proposition, which will be
proved in the Appendix.

PROPOSITION 6.1 (state space collapse). Let xn be a sequence satisfying
(4.4). Let C be given by (5.14) and let G′ be as in the proof of Proposition 5.2.
Let ω ∈ G′, and let xζ be a subsequence (depending on ω) constructed in the
proof of Proposition 5.2. Then for each k ∈ K and t ­ 0

(6.1) lim
ζ→∞

1
|xζ |

∣∣W xζ

k

(
(t + C)|xζ |

)−mkQ
xζ

k

(
(t + C)|xζ |

)∣∣ = 0.

REMARK 6.1. Most of the arguments presented in this paper can be gener-
alized to open preemptive EDF networks with Markovian routing. However, we
have been unable to show that in this general case the limit (5.17) satisfies the fluid
model equation (5.8). It is also unclear how to prove Proposition 6.1 in this gen-
erality. This is why our analysis is limited to the case of deterministic customer
routes.

We shall now prove Theorem 3.1. The main idea of the proof, which is due
to Dai [8], is to approximate the sample paths of the (suitably scaled) performance
processes under consideration by the corresponding fluid models and to use stabil-
ity of the latter models to show (2.12).

P r o o f o f T h e o r e m 3.1. Let

(6.2) δ = C + c(1 + |α|C),

where c is the constant appearing in the definition of a stable FISFO fluid model,
and C is given by (5.14). By Proposition 2.2, it suffices to show (2.12). If (2.12) is
false, there exist ε > 0 and a sequence xn ∈ Ω such that |xn| → ∞ and

(6.3) Exn

∣∣X(δ|xn|)
∣∣ ­ ε|xn|

for every n. Without loss of generality we can assume that the sequence xn satisfies
(4.4). Let the set G′ and the subsequence xη be as in Proposition 5.2. We will first
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show that on G′

(6.4) lim
η→∞

∣∣Xxη(δ|xη|)
∣∣/|xη| = 0.

If this is not the case, there exist ω ∈ G′, ε1 > 0 and a subsequence xϑ of the
sequence xη such that for every ϑ

(6.5)
∣∣Xxϑ(δ|xϑ|)(ω)

∣∣ ­ ε1|xϑ|.

By Proposition 5.2, the sequence xϑ contains a subsequence xζ such that the limit
(5.17) satisfies the FISFO fluid model equations (5.6)–(5.10). By (4.7) and the fact
that G′ ⊆ G, we have

|∆C|xζ |Q
xζ (0)(ω)| = ∣∣Qxζ (C|xζ |)(ω)

∣∣ ¬ |xζ |+
∣∣Nxζ (C|xζ |)(ω)

∣∣
¬ (1 + |α|C)|xζ |+ o(|xζ |).

Consequently, limζ→∞ |∆C|xζ |Q
xζ (0)(ω)|/|xζ | ¬ 1 + |α|C. This, together with

Proposition 5.1, yields

(6.6) lim
ζ→∞

∣∣Qxζ (δ|xζ |)(ω)
∣∣/|xζ |

= lim
ζ→∞

∣∣∆C|xζ |Q
xζ

(
c(1 + |α|C)|xζ |

)
(ω)

∣∣/|xζ | = 0.

This, in turn, together with Proposition 6.1, implies that

(6.7) lim
ζ→∞

∣∣W xζ (δ|xζ |)(ω)
∣∣/|xζ | = 0.

Using the fact that G′ ⊆ G and arguing as in the proof of Lemma 4.3a in [8], we
can show that

(6.8) lim
ζ→∞

∣∣Rxζ (δ|xζ |)(ω)
∣∣/|xζ | = 0

(recall from (2.10) that R(t) is the vector of the residual interarrival times at t).
Denote the positive part of the greatest lead time in the system at time t by L+(t).
Lemma 4.1, together with the fact that, by Lemma 5.2 and (6.2), for large ζ there
are no initial customers at time δ|xζ | in the system with initial state xζ , implies

(6.9) lim
ζ→∞

L
xζ

+ (δ|xζ |)(ω)/|xζ | = 0.

By (6.6)–(6.9), limζ→∞
∣∣Xxζ (δ|xζ |)(ω)

∣∣/|xζ | = 0, which contradicts (6.5). We
have proved (6.4).
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Arguing as in the proof of Lemma 5.2 we can show that for every k = (k, j, b)
W

xη

k (δ|xη|) is bounded by a random variable with the same distribution as

W̃
xη

k (δ|xη|) = |xη|+
N0

k (δ|xη |)∑

i=1

vk(i).

By Wald’s identity,

(6.10) ExηWk(δ|xη|) ¬ EW̃
xη

k (δ|xη|) = |xη|+ mkEN0
k (δ|xη|).

Using (6.4), (6.10) and arguing as in the proofs of Lemmas 4.3b and 4.5 in [8],
we get

lim
η→∞Exη

∣∣X(δ|xη|)
∣∣/|xη| = 0,

which contradicts (6.3). ¥

7. PROOF OF THEOREM 3.2

In this section we prove Theorem 3.2. The argument is similar to the proof of
Theorem 3.1, but simpler. In particular, we shall now verify (2.12) directly, without
using a fluid model. The main idea of the proof is that, because of reneging, after
a time large enough to process all the initial customers to completion, the number
of customers present in the system cannot be very large.

P r o o f o f T h e o r e m 3.2. Let δ = 3/2. Again, by Proposition 2.2, it is
sufficient to show (2.12). If (2.12) is false, there exist ε > 0 and a sequence xn ∈ Ω
such that |xn| → ∞ and (6.3) holds for every n. Without loss of generality we can
assume that |xn| increases with n and the sequence xn satisfies (4.4). For k ∈ K
and 0 ¬ t1 < t2, let Bn

k(t1, t2) denote the set of j = 1, 2, . . . for which the cus-
tomer corresponding to the service time vk(j) has entered the network with initial
state xn in the time interval (t1|xn|, t2|xn|]. Let γ denote the maximal expected
number of visits to all buffers in the network by a customer entering the network
at any k ∈ E . Proceeding similarly to the proof of Proposition 3.2 in [7], we can
show that there exists a set G′ ⊆ G with P(G′) = 1 such that on G′ for each r > 0
and k ∈ K

(7.1)
1
|xn|

∣∣ ∑

i∈Bn
k (0,r)

vk(i)−mk|Bn
k(0, r)|∣∣→ 0

and for every k ∈ K, r1 < r2 we have

(7.2) |Bn
k(0, r2)| − |Bn

k(0, r1)| ¬ 4|α|γ(r2 − r1)|xn|
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for n large enough. We want to show that on G′

(7.3) lim
n→∞

∣∣Xxn(δ|xn|)
∣∣/|xn| = 0.

First note that `n ¬ |xn|, so because of reneging, none of the initial customers
of the network with initial state xn is present at this network at time δ|xn|. Put
T0 = δ in Lemma 4.1. Because of reneging, the customers present at the network
with initial state xn at time δ|xn|must have entered it after time δ|xn| − Ln. Thus,
on G′, by (4.7) and Lemma 4.1,

∣∣Qxn(δ|xn|)
∣∣ ¬ ∣∣Nxn(δ|xn|)−Nxn(δ|xn| − Ln)

∣∣(7.4)

¬ |α|Ln + o(|xn|) = o(|xn|),∣∣W xn(δ|xn|)
∣∣ ¬ ∑

k∈K

∑

i∈Bn
k (δ−Ln/|xn|,δ)

vk(i).(7.5)

By (7.4), on the set G′ we have

(7.6) lim
n→∞

∣∣Qxn(δ|xn|)
∣∣/|xn| = 0.

Fix ε ∈ (0, 1/2). By (7.5), (7.1) and (7.2), on the set G′ ∩ [Ln ¬ ε|xn|] we have
∣∣W xn(δ|xn|)

∣∣ ¬ ∑

k∈K

∑

i∈Bn
k (δ−ε,δ)

vk(i)

=
∑

k∈K
mk

(|Bn
k(0, δ)| − |Bn

k(0, δ − ε)|)|xn|+ o(|xn|)

¬ 4|α|γε
∑

k∈K
mk |xn| + o(|xn|)

(7.7)

for n large enough. By (7.7), Lemma 4.1 and the fact that ε ∈ (0, 1/2) is arbitrary,

(7.8) lim
n→∞

∣∣W xn(δ|xn|)
∣∣/|xn| = 0

on G′. The proof of the fact that

lim
n→∞

∣∣Rxn(δ|xn|)
∣∣/|xn| = lim

n→∞Lxn
+ (δ|xn|)/|xn| = 0

on G′, where L+(t) is the greatest lead time in the system at time t, is similar to
the corresponding argument in the proof of Theorem 3.1. This shows (7.3). Using
(7.3) and arguing as in the proofs of Lemmas 4.3b and 4.5 in [8], we get

lim
n→∞Exn

∣∣X(δ|xn|)
∣∣/|xn| = 0,

which contradicts (6.3). ¥
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8. APPENDIX

This appendix contains the proofs of Propositions 5.2 and 6.1.

P r o o f o f P r o p o s i t i o n 5.2. Let a sequence xn satisfy (4.4) and let the
set G1 and the subsequence xη be as in Lemma 5.2.

For k = (k, j, b) ∈ K and t1, t2 ­ 0, let Bn
k(t1, t2) denote the set of j =

1, 2, . . . for which the customer corresponding to the service time vk(j) has entered
the network with initial state xn in the time interval (t1|xn|, t2|xn|]. In particular,
Bn

k(t1, t2) = ∅ if t1 ­ t2. By the independence of the interarrival times and the
service times, together with the weak law of large numbers, we have

(8.1)
1
|xη|

∣∣ ∑

i∈Bη
k(t1,t2)

vk(i)−mk|Bη
k(t1, t2)|

∣∣ P−→ 0.

However, (4.7) implies that on the set G, for 0 ¬ t1 < t2 we get

|Bη
k(t1, t2)| = N

xη

k (t2|xη|)−N
xη

k (t1|xη|)
= αk|xη|

(
(t2 − rk)+ − (t1 − rk)+

)
+ o(|xη|),

and hence (8.1) yields

(8.2)
∣∣∣∣

1
|xη|

∑

i∈Bη
k(t1,t2)

vk(i)− αkmk

(
(t2 − rk)+ − (t1 − rk)+

)∣∣∣∣
P−→ 0.

Using (8.2) and arguing as in the proof of (A.1) in [7] or in the proof of Proposi-
tion 3.4 in [11], we get, for every r0 > 0,

sup
0¬t1<t2¬r0

∣∣∣∣
1
|xη|

∑

i∈Bη
k(t1,t2)

vk(i)− αkmk

(
(t2 − rk)+ − (t1 − rk)+

)∣∣∣∣
P−→ 0.

By Theorem 20.5 in [2], there exist a set G2 with P(G2) = 1 and a subsequence
(still denoted by η) such that on G2 we have the pointwise convergence

(8.3) sup
0¬t1<t2¬r0

∣∣∣∣
1
|xη|

∑

i∈Bη
k(t1,t2)

vk(i)−αkmk

(
(t2− rk)+− (t1− rk)+

)∣∣∣∣→ 0.

Let G′ = G ∩ G1 ∩ G2. We have P(G′) = 1. Fix ω ∈ G′. Consider an arbi-
trary subsequence ϑ of the sequence η. For t, s ­ 0, let

X
(ϑ)(t, s) =

(
A

(ϑ)(t, s), D(ϑ)(t, s), T (ϑ)(t, s), Y (ϑ)(t, s), Z(ϑ)(t, s)
)

= ∆C|xϑ|X
xϑ(t|xϑ|, s|xϑ|)/|xϑ|.
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The coordinate mappings of X
(ϑ)(ω) inherit the monotonicity properties from the

corresponding coordinate mappings of Xxϑ(ω). Thus, by Helley’s choice theorem
(see, e.g., [2], Theorem 25.9 and the remark in the proof of Theorem 29.3), there
exists a subsequence ζ and a right-continuous function

X(t, s) =
(
A(t, s),D(t, s), T (t, s), Y (t, s), Z(t, s)

)
, t, s ­ 0

(both depending on ω) such that each coordinate map of X
(ζ)(ω) converges to

the corresponding coordinate map of X at every point of continuity of the lat-
ter function. Since a monotone function has at most countably many discontinu-
ities, (5.1)–(5.2), (5.4) and Lemma 5.1 imply that X satisfies (5.6)–(5.7), (5.9).
In particular, because Tk(·, s) and Y j(·, s) are nondecreasing, (5.9) implies that
the functions T (t, s) and Y (t, s) are Lipschitz in t. We will show that they are
also continuous in s. Let T0 > C + 1. Suppose that for some k = (k, j, b) ∈ K,
0 ¬ t < T0 − C − 1 and s > 0,

(8.4) 2ε , Tk(t, s)− Tk(t, s−) > 0.

Let s1, s2 be such that 0 < s1 < s < s2,

(8.5) s2 − s1 < ε/(αkmk),

and the function Tk is continuous at the points (t, s1), (t, s2). By (8.4) and the
monotonicity of T (t, s) in s, for ζ large enough we have
(8.6)

ε|xζ | ¬ T
xζ

k

(
(t + C)|xζ |, (s2 + C)|xζ |

)− T
xζ

k

(
(t + C)|xζ |, (s1 + C)|xζ |

)
.

In other words, the cumulative work done by time (t + C)|xζ | by server j on
type k customers with lead times at time (t + C)|xζ | belonging to the interval(
(s1 − t)|xζ |, (s2 − t)|xζ |

]
during their b-th visit at station j is at least ε|xζ |. It

is easy to check that these customers arrived at the network in the time interval(
(s1 + C)|xζ | − Lζ , (s2 + C)|xζ |

]
. By (8.3), we have

ε|xζ | ¬
∑

i∈Bζ
k(s1+C−Lζ/|xζ |,s2+C)

vk(i)(8.7)

¬ αkmk

(
(s2 − s1)|xζ |+ Lζ

)
+ o(|xζ |).

This, by (8.5) and Lemma 4.1, yields a contradiction for sufficiently large ζ. We
have proved continuity of T (t, s) in s (the argument actually shows that Tk(t, s) is
Lipschitz in s with the Lipschitz constant αkmk). By (5.9), Y is Lipschitz in both
variables, so (T (ζ)

, Y
(ζ))(t, s)→ (T , Y )(t, s) for any t, s ­ 0. As in the proof of

Lemma 5.1, it is easy to see that this convergence is u.o.c. in t and s.
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We will now show that X satisfies (5.8). Let k = (k, j, b) ∈ K and T0 > 0.
For every 0 ¬ t, s < T0 − C − 1, we have

T
(ζ)
k

(
(t + C)|xζ |, (s + C)|xζ |

)
= T

(ζ)
k,1 + T

(ζ)
k,2(t, s) + T

(ζ)
k,3(t, s),(8.8)

D
(ζ)
k

(
(t + C)|xζ |, (s + C)|xζ |

)
= D

(ζ)
k,1 + D

(ζ)
k,2(t, s),(8.9)

where the quantities on the right-hand side of (8.8) and (8.9) are defined as follows.
First, T

(ζ)
k,1 is the sum of the service times of type k customers present in the

system at time 0 corresponding to their b-th visit at server j. In particular, this
quantity does not depend on t and s. Let us note that for every t ­ 0 the lead times
at time (t + C)|xζ | of the initial customers are bounded by `+

ζ − (t + C)|xζ |, which
in turn is dominated by |xζ |(s− t) for all s ­ 0 since `+

ζ ¬ |xζ | and C > 1. Also,
by Lemma 5.2, all the initial customers have been served to completion at every
station by time C|xζ |. Hence, T (ζ)

k,1 is the portion of T
(ζ)
k

(
(t + C)|xζ |, (s + C)|xζ |

)
devoted to the initial customers.

The quantity T
(ζ)
k,2(t, s) is the sum of the service times of type k customers

visiting j for the b-th time who arrived at the system after time 0, have been fully
served by time (t + C)|xζ | during this visit at j, and have lead times at (t + C)|xζ |
not greater than |xζ |(s− t).

Next, T
(ζ)
k,3(t, s) is the time devoted by server j to those type k customers

visiting j for the b-th time who arrived at the system after time 0, have lead times
at time (t + C)|xζ | not greater than |xζ |(s− t), and have been only partially served
by time (t + C)|xζ | during this visit at j.

Finally, D
(ζ)
k,1 (D(ζ)

k,2(t, s)) is the number of customers whose service times are

counted in T
(ζ)
k,1 (T (ζ)

k,2(t, s)).
It is easy to see that to show (5.8) it suffices to verify the relations

T
(ζ)
k,2(t, s) = mkD

(ζ)
k,2(t, s) + o(|xζ |),(8.10)

T
(ζ)
k,3(t, s) = o(|xζ |).(8.11)

For t ­ 0, let a
(ζ)
k (t) be the arrival time at the network with initial state xζ

of the type k customer who was the last one to receive service at station j by
time (t + C)|xζ | during his b-th visit at j. Every type k customer who arrived at
the network before a

(ζ)
k (t) − Lζ (in particular, by a

(ζ)
k (t) − Lζ − 1) has already

finished his b-th visit at j by time (t + C)|xζ |. Similarly, type k customers who
arrived at the network after a

(ζ)
k (t) + Lζ cannot preempt the type k customer who

arrived at time a
(ζ)
k (t), and hence such customers have not received any service by

time (t + C)|xζ | during their b-th visit at j. Every customer who has entered the
network by time (s + C)|xζ | − Lζ has lead time by time (t + C)|xζ | not greater
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than |xζ |(s − t). On the other hand, each customer who has entered the network
after time (s + C)|xζ | has lead time by time (t + C)|xζ | greater than |xζ |(s− t).
These facts, together with (4.7) and (8.3), imply

αkmk

(((
a

(ζ)
k (t)− Lζ − 1

)
/|xζ |

)
∧ (s + C − Lζ/|xζ |)− rk

)+

+o(1)

=
1
|xζ |

∑

i∈Bζ
k(0,((a

(ζ)
k (t)−Lζ−1)/|xζ |)∧(s+C−Lζ/|xζ |))

vk(i)

¬ 1
|xζ | T

(ζ)
k,2(t, s) ¬ 1

|xζ |
∑

i∈Bζ
k(0,((a

(ζ)
k (t)+Lζ)/|xζ |)∧(s+C))

vk(i)

= αkmk

(((
a

(ζ)
k (t) + Lζ

)
/|xζ |

)
∧ (s + C)− rk

)+

+ o(1),

(8.12)

αk

(((
a

(ζ)
k (t)− Lζ − 1

)
/|xζ |

)
∧ (s + C − Lζ/|xζ |)− rk

)+

+ o(1)

=
1
|xζ |N

xζ

k

(
(a(ζ)

k (t)− Lζ − 1) ∧ (
(s + C)|xζ | − Lζ

))

¬ 1
|xζ | D

(ζ)
k,2(t, s) ¬

1
|xζ |N

xζ

k

(
(a(ζ)

k (t) + Lζ) ∧
(
(s + C)|xζ |

))

= αk

(((
a

(ζ)
k (t) + Lζ

)
/|xζ |

)
∧ (s + C)− rk

)+

+ o(1).

(8.13)

Lemma 4.1, (4.4) and (8.12)–(8.13) imply (8.10). Similarly, we get

0 ¬ 1
|xζ |T

(ζ)
k,3(t, s) ¬ 1

|xζ |
∑

i∈Bζ
k(((a

(ζ)
k (t)−Lζ−1)/|xζ |),(a(ζ)

k (t)+Lζ)/|xζ |)
vk(i)

¬ αkmk(2Lζ + 1)/|xζ |+ o(1) = o(1),

and (8.11) holds true. We have proved that X satisfies (5.8).
By (5.6)–(5.9) and the Lipschitz continuity of (T , Y ), X(t, s) is Lipschitz in

both variables, and consequently

(8.14) X
(ζ)(t, s)→ X(t, s)

u.o.c. in t and s.
Finally, we show that X satisfies (5.10). Let T0 > 0, s ­ 0. By (5.5), we have

(8.15)
T0∫
0

∑

k∈C̄(j)
Z

(ζ)
k (t, s) Y

(ζ)
j (dt, s) = 0.

By Lemma 4.4 in [8], (8.14) and (8.15) imply
T0∫
0

∑

k∈C̄(j)
Zk(t, s) Y j(dt, s) = 0

and (5.10) is satisfied. ¥
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P r o o f o f P r o p o s i t i o n 6.1. By Lemma 5.2, for ζ sufficiently large, all
initial customers have left the system with initial state xζ by time C|xζ |. Let T0 >

C + 1 and let 0 ¬ t ¬ T0 − C − 1. Let a
(ζ)
k (t), k ∈ K, be as in the proof of

Proposition 5.2. Recall that, for every k = (k, jk,i, b) ∈ K, each type k customer
who arrived at the network before a

(ζ)
k (t)−Lζ (in particular, by a

(ζ)
k (t)−Lζ − 1)

has already been served to completion by time (t + C)|xζ | during his b-th visit
at jk,i. Also, a customer of type k who arrived at the network after a

(ζ)
k (t) + Lζ

has not received any service by time (t + C)|xζ | during his b-th visit at jk,i, and
hence, if he is already in the network at time (t + C)|xζ |, he is either a class k
customer who has not received any service or he is still “upstream”, i.e., a member
of some class l = (k, jk,i′ , b

′), i′ < i. To show (6.1), we need to analyze two cases:
k = (k, jk,1, 1) for some k and k = (k, jk,i, b) for some k, b and i > 1. We will
consider only the second case; the proof in the first one is similar, but simpler, since
if k = (k, jk,1, 1), there is no need to take “upstream” customers into account. Let
k = (k, jk,i, b), i > 1, and let k′ = (k, jk,i−1, b

′). By (4.7), (8.3) and the facts
recalled above, we have

αkmk

((
a

(ζ)
k′ (t)− Lζ − 1− rk|xζ |

)+ − (
a

(ζ)
k (t) + Lζ − rk|xζ |

)+
)+

+ o(|xζ |)
=

∑

i∈Bζ
k((a

(ζ)
k (t)+Lζ)/|xζ |,(a(ζ)

k′ (t)−Lζ−1)/|xζ |)
vk(i) ¬W

xζ

k

(
(t + C)|xζ |

)

¬ ∑

i∈Bζ
k((a

(ζ)
k (t)−Lζ−1)/|xζ |,(a(ζ)

k′ (t)+Lζ)/|xζ |)
vk(i)

= αkmk

((
a

(ζ)
k′ (t) + Lζ − rk|xζ |

)+−(
a

(ζ)
k (t)−Lζ − 1− rk|xζ |

)+
)+

+o(|xζ |),

αk

((
a

(ζ)
k′ (t)− Lζ − 1− rk|xζ |

)+ − (
a

(ζ)
k (t) + Lζ − rk|xζ |

)+
)+

+ o(|xζ |)

=
(
N

xζ

k

(
a

(ζ)
k′ (t)− Lζ − 1

)−N
xζ

k

(
a

(ζ)
k (t) + Lζ

))+
¬ Q

(ζ)
k (t)

¬
(
N

xζ

k

(
a

(ζ)
k′ (t) + Lζ

)−N
xζ

k

(
a

(ζ)
k (t)− Lζ − 1

))+

= αk

((
a

(ζ)
k′ (t) + Lζ − rk|xζ |

)+ − (
a

(ζ)
k (t)− Lζ − 1− rk|xζ |

)+
)+

+ o(|xζ |).
This, together with Lemma 4.1, shows (6.1). ¥
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