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Abstract. Under the symmetric a-stable distributional assumption 
for the disturbances, Blattberg and Sargent [3] consider unbiased line- 
ar estimators for a regression model with non-stochastic regressors. 
We study both the rate of convergence to the true value and the 
asymptotic distribution of the normalized error of the linear unbiased 
estimators. By doing this, we allow the regressors to be stochastic and 
disturbances to be heavy-tailed with either finite or infinite variances, 
where the tail-thickness parameters of the regressors and disturbances 
may be different. 
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1. INTRODUCTION 

For the estimation of the coefficients of a regression model one typically 
applies ordinary least squares (OLS), which is equivalent to the maximum 
likelihood estimation if the disturbances are normally distributed. Further- 

* The views expressed in this paper are those of the authors and not necessarily those of the 
Deutsche Bundesbank or other institutions involved. 

Samorodnitsky's research was partially supported by the Deutschen Forschungsgemeinschaft 
and by NSA grant MSPF-02G-183 and NSF grant DMS-0071073 at Cornell University. 

Rachev's research was supported by grants from Division of Mathematical, Life and Physical 
Sciences, College of Letters and Science, University of California, Santa Barbara, and the Deut- 
schen Forschungsgemeinschaft. 

Kurz-Kim gratefully acknowledges research support from the Alexander von Humboldt 
Foundation. 



276 G. Samorodn i t sky  et al. 

more, according to the Gauss-Markov theorem, the OLS estimator has the 
minimum variance of all linear unbiased estimators if the disturbances follow 
a distribution with finite variance. However, if the disturbances follow a dis- 
tribution with infinite variance, but with finite mean, the OLS estimator is still 
unbiased but no longer a minimum variance estimator. 

Relaxing the normality assumption by allowing disturbances to have 
a symmetric a-stable distribution with infinite variance (1 < a < 2), Blattberg 
and Sargent [3] generalize the OLS estimator to a different linear unbiased 
estimator that minimizes the a-stable scale of the estimator. The generalization 
is performed in the framework of a regression model in which the independent 
variable is assumed to be non-stochastic. 

We consider both the rate of convergence to the true value and the asymp- 
totic distribution of the normalized error of the linear unbiased estimators of 
coefficients in the regression model with both stochastic regressors and dis- 
turbances being heavy-tailed with either finite or infinite variances,' and the 
tail-thickness parameters of the regressors and disturbances may be different. 
Even though our distributional assumptions are more general than the as- 
sumptions of a-stability, the limiting distributions of the estimators will often be 
expressed through stable random variables (r.v.'s). 

A random variable (r.v.) X is stable if for all A, B > 0 there are C > 0 and 
D real such that AX, + BX, CX + D, where Xi and X, are independent 
copies of X. For a stable random variable X there is a number a ~ ( 0 ,  21 such 
that C" = A"+ B". Exponent a is called the stability parameter. A rev. with 
exponent a is said to be a-stable distributed. Closed-form expressions of 
a-stable distributions exist only for a few special cases. However, the logarithm 
of the characteristic function of the a-stable distribution can be written as (see 
[I51 and [I41 for more details on a-stable distributions) 

In q (t) = I sign (t) tan - 

sign (t) In ~t 11 + 

for a # 1, 

for a = 1, 

where a is the stability parameter (or tail-thickness parameter), a is the scale 
parameter, p E [- 1, 11 is the skewness parameter, and p is the location parame- 
ter. If = 0, the distribution is symmetric. The shape of the symmetric a-stable 
distribution (SaS) is determined by the tail-thickness parameter a ~ ( 0 ,  21. For 
0 < a < 2 the tails of the distribution are thicker than those of the normal 
distribution; and the tail-thickness increases as a decreases. When a = 2, the SaS 

There is some controversy on whether the variance of financial returns is always infinite. 
We avoid this controversy by using a heavy-tailed model that allows for both finite or infinite 
variance. 
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distribution coincides with the normal distribution with variance 202, the only 
member of the family with finite variance. When a = 1, the SaS distribution 
reduces to the Cauchy distribution. If a < 2, moments of order a or higher do 
not exist, which means the variance is infinite. If X is an a-stable random 
variable, 0 < a < 2, with scale o, skewness p, and location p, then a common 
notation is X - S,(o, p, p). In that case the tails of X are given by 

as A -a CO, where 

Some more basic information and notation on stable random variables we 
use, unless otherwise specified, can be found in [14]. 

One distinct example for a possible application of our results in the paper 
can be found in financial market analysis. For an econometric analysis based 
on a dynamic capital asset pricing model, distributional assumptions on the 
disturbance must be made. Since publishing the paper by Bachelier [I], the 
traditional and most widely adopted distributional assumption on financial 
return process has been the Gaussian assumption. Due to the influential works 
of Mandelbrot [lo] and Fama [6], however, the a-stability with 0 < a < 2 has 
often been considered to be a more realistic distribution assumption for asset 
returns than that of a normal distribution, because asset returns are typically 
fat-tailed and excessively peaked around zero - phenomena that can be cap- 
tured by a-stable distributions with a < 2. This is the so-called stable Paretian 
assumption. In a certain sense the stable Paretian assumption is a generaliza- 
tion rather than an alternative to the Gaussian assumption. Indeed, according 
to the generalized central limit theorem, the limiting distribution of the sum of 
a large number of iid r.v.'s is a-stable with 0 < a < 2; see [15]. For more 
applications of the a-stable distributions in economics and finance, see [11] 
and [12]. 

In this paper we introduce a new family of unbiased estimators of the 
coefficient in a linear regression model in the presence of heavy tails, general- 
izing the estimator introduced by Blattberg and Sargent [3]. In Section 2 we 
present our new estimator and analyze the asymptotic distribution of the 
estimator. In Section 3 we summarize various scenarios for different tail indices 
for regressors and disturbances, and discuss the choice of the optimal estimator 
in the proposed family of estimators, both analytically and numerically. Sec- 
tion 4 contains some concluding remarks. 
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2. RATE OF CONVERGENCE AND THE LIMITING DISTRIBUTION 
FOR THE REGRESSION COEFFICIENT ESTIMATOR 

Consider a simple regression model like the following: 

We assume that the regressors {Xj} are iid random variables with polyno- 
mially decaying tails. Specifically, 

(2.2) P()XII>A)-DIA-"x, A+co, for some a,>O and D1>O. 

Furthermore, we assume that the noise (disturbances) {Uj} are also iid random 
variables, which we assume to be symmetric, with 

(2.3) P(IU11>A)-D2A-"U, A + m ,  for some a,>O and D 2 > 0 .  

We assume, further, that the sequences {XI} and {Uj} are independent. 
Note that no assumptions on the symmetry of either dependent obser- 

vations or regressors are made. We remark, further, that it is relatively straight- 
forward (at least, away from the boundary cases) to extend the results below to 
the case where the tails of the regressors and noise variables are regularly 
varying (i.e. adding slowly varying factors in (2.2) and (2.3)). Since such slowly 
varying functions are not practically observable, we decided against including 
extra technical arguments in an already highly technical paper. Finally, we 
allow values of a, and a, in the interval (0, 11 as well, since our methods cover 
those cases equally well. 

The goal is to estimate the regression coefficient in (2.1), and our es- 
timator is 

for some 8 > 1 with (.) defined as a signed powere2 Note that the OLS es- 
timator corresponds to 0 = 2 in (2.4). 

Our immediate task is to understand the behavior of the difference 

where the last distributional equality follows from the symmetry of the noise. 
That is, we are interested in the rate of convergence of the estimator Po,, to the 
true value depending on the choice of 0. When such convergence actually 
takes place, this will also establish consistency (in probability) of our esti- 
mator. 

We mean that a ( p )  = lalP-l a. 
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It is clear that the rate of convergence to zero of the difference A,, depends 
significantly on the tail exponents a, and a,, and on the choice of 0. What is 
interesting is that we will see below that there are basically 7 different cases of 
possible values of a, and a,, in each of which the rate of convergence is a dif- 
ferent function of 0. 

A common feature of our results will be the existence of an expo- 
nent d such that 

for some non-degenerate weak limit W Occasionally, on certain boundaries we 
will have to modify (2.6) to allow for a slowly varying factor on the left-hand 
side. That is, we will have 

where L is a slowly varying function. In any case we will view the exponent d 
in either (2.6) or (2.7) as measuring the rate of convergence. In particular, the 
exponent d turns out to be a different function of 0 in the 7 different cases of 
possible values of a, and a, we mentioned above. 

The reader will find it easier to follow the different technical detail below 
after noticing the existence of several critical boundaries. The first boundary is 
that 

Note that on one side of that boundary IXjlOl(O-l) has a finite mean, and hence 
the denominator in (2.5) is governed by the law of large numbers (LLN). On 
the other side of that boundary, IXjlOflO-'I is in the domain of attraction of 
a positive stable law and the corresponding heavy-tailed central limit theorem 
governs the behavior of the denominator in (2.5). On the boundary itself, the 
mean is infinite, but the (weak) LLN is still in force. 

The second critical boundary is that of 

(2.9) min ((0 - 1) a,, au) 2. 

Here on one side of the boundary the random variables IXjI1/(@-') Uj have 
a finite variance, and hence the Gaussian central limit theorem (CLT) governs 
the behavior of the numerator in the second expression in (2.5). On the other 
side of that boundary these random variables are in the domain of attraction of 
a symmetric stable non-Gaussian law, and hence the corresponding CLT will 
be responsible for the behavior of the numerator. On the boundary itself the 
variance is infinite, but the CLT will still be in force. 

L (x )  is a slowly varying function as x -, co, if for every constant c > 0 and lim L (cx)/L ( x )  
exists and is equal to I. X' 03 
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We now proceed to consider the different ranges of ax and a, mentioned 
above. 

Scenario 1. Suppose that 

(2.10) 1 and a,>2.  

Note that under this scenario (2.8) fails independently of 0. On the other hand, 
one can be on either side of the other the critical boundary (2.9) under this 
scenario, and the various possible cases are described in the following theorem. 

THEOREM 2.1. Assume that (2.10) holds. 
(a) Suppose that 

2 +ax 
0 2 - .  

ax 

Then the exponent d in (2.7) is given by 

Specijically, in the non-boundary case 

we have 

(E  uf)l/2 (E 1x1 1 2 / ( 8  l ) ) l / Z  

nd A,, * N ( 0 ,  1) 
c ;8/((8 - 1 )ax) D O / ~ X ( O  - 1)  

a ( 8 -  1) /8  1 s ( 8  - 1)ux/8 ( I  Y I Y (9 
weakly, where N (0 ,  1) and S(,- l)ux,8 (1 ,  1, 0)  on the right-hand side above are 
independent. Furthermore, Dl is the constant in the tail in (2.2), and the constant 
C, for 0 < a < 2 is given in (1.2). 

In the boundary case 

we have 

the random variables on the right-hand side of (2.15) being, once again, indepen- 
dent. Here D2 is the tail constant in (2.3). 

I n  the second boundary case 
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we have 

(2.17) 
nd (Dl E C I U I I ~ I ) ' ~ ~  N ( 0 ,  1) 

(log n)ll2 * c a ;0/aX(0 (0-  l ) / e  - 1)  DB/~,(O 1 
- I )  s ( ~ - l ) a ~ / ~ ( l ,  1 ,  0)' 

and the random variables on the right-hand side of (2.17) are independent. 
In the third boundary case 

(2.18) 
2 +ax 

a, = 2 and 0 > --- 
ax 

we obtain 

and the random variables on the right-hand side of (2.19) are independent. 
(b)  Suppose that 

2+ax 
(0 - 1) ax < 2 or, equivalently, 0 i ---. 

ax 

Then the exponent d in (2.7) is given by 

speciJically, we have 

Here, as usual, (I;.) represents the arrival times of a unit rate homogeneous 
Poisson process on (0,  a), independent of the sequence (Uj) (here the numerator 
and the denominator on the right-hand side of (2.22) are not independent). 

P r o o f .  (a) W e  start with the non-boundary case. Here 

Let E > 0,  and 

Note that 

weakly, where Poiss(p) stands for a Poisson random variable with mean p. 

9 - PAMS 27.2 
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Write (by giving names to the numerator and denominator on the 
right-hand side of (2.23)) 

and let 

j ~ K n ( e )  

where 

In (2.29), {Zj} is an iid sequence with a common law P ( X j € .  I lXjl < &nlbx), 
and independent of the sequences {Xj} and {Uj). 

Note that fin and D, are independent. By the CLT for triangular arrays we 
see that 

(2.30) fin N (0, E [IX, j12/('- I)] E [U:]) 

(e.g. Theorem 5.1.2 in [9]). 
Furthermore, we claim that 

where N, is Poiss (Dl independent of an iid sequence {Zj(&)) with a com- 
mon law 

This is, however, clear because of (2.25) and the fact that, for all A, 

and the independence between N, and {Zj(&)) follows from the fact that the 
terms in the sum in (2.28) are independent of the random number of terms 
Kn (E). We conclude that 

fin * (E [ I ~ ~ 1 ~ 1 ( ~ - ~ ) ]  E [u:])~I~ N o ,  1) 
Dn Z ~ I  1 Z j  (E)' 

with the numerator and the denominator on the right-hand side of (2.32) being 
independent. 
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Note that 

- - E Cexp { - 6 ~ ;  9"(9 - 1 )ax) DO/((@- 1)ax) 
9-  l)ax/g 1 S(9 - 1)ux/g (1, 1, 0)}1 

for 6 > 0 as E -+ 0. Therefore, (2.13) will follow once we show that for all 6 > 0 

NU, N, l i m ~ r  > a) = 0; 
~ + O n + c o  DE, 

see Theorem 3.2 in [2]. To this end, it is enough to prove that 

and 

& + 0 n + c c  
l i m ~ P ( l ~ - ~ /  DE, DE, > 6) = 0, 

We will start with (2.34). Since (l/DEn) is tight, it is enough to prove that for 
every 6 > 0 

lim lim P(INUn-N,[ > 6) = 0. 
E-+O ,-+a, 

We have 

and so (2.34) will follow once we show that for all 6 > 0 

lim KP (n-'12 C IXjll/(e-l) U. J > 6) = 0, 
& + O  n+co .i~Kn(&) 

lim l i m ~ ( n - ' / ~  C 1 2 ~ l ~ / ( ~ - ~ ) U ~  > 6) = 0. 
&-+On+cu  .i~Kn(&) 

Note that as n -+ co 
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and (2.37) follows. The proof of (2.38) is similar and even easier. Hence we have 
established (2.34). 

We now switch to proving (2.35). Since (&), (116,) and (l/DEn) are all 
tight, it is enough to prove that 

Notice that 

and hence 

where 
CO 

is the appropriate Poisson random measure. Here (Tj) represents the arrival 
times of a unit rate homogeneous Poisson process on (0, co). See, e.g., problem 
4.4.2.8 in [13]. Since 

we have established (2.39), and so we have proved (2.35). That completes the 
proof of (2.13). 

The argument in the first boundary case (2.14) is very similar to that of 
(2.13) above, but instead of the CLT for triangular arrays with a finite variance 
it uses the general CLT for triangular arrays as, for example, in Theorem 5.3.2 
in [9]). For example, the statement (2.30) now reads 

with 

Indeed, by the symmetry of (Ui), the third condition in the above-cited theorem 
holds, and the first condition is weaker than the second one. The second 
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condition reduces to the claim 

1 
-E [u: I X ~ ~ ~ " ~ - ~ )  l(Ixll < ~nl/ 'x~ I x ~ ~ ~ / ( ~ - ~ )  < (dog  n)lI2)] 
log n 

which easily follows from the fact that 

The second boundary case (2.16) is entirely similar. The third boundary 
case (2.18) is also similar, but there is an extra power of the logarithm in that 
case. This is due to the fact that in this boundary case 

see e.g. [4]. 
We now switch to the second part of the theorem. Here 

Let r > O  and write 

Note that 

where 
n 

Nn = 8,- a x x j ,  n = 1, 2, . . ., 
j=1 

and K,,, 2 K2,, 2 . . . 2 K,,, are the size-ordered points of N,. 
Recalling (see, once again, [13]) that 
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weakly in [- co, + oo]\{O}, we see that 

weakly as n -+ co, where (Ki) stands for the size-ordered points of N.  Note that, 
almost surely, 

the right-hand side of (2.22). Therefore, an appeal to Theorem 3.2 in [2] shows 
that, to prove the latter, it remains to be demonstrated that for any A > 0 

Clearly, the sequence { (  n l u x  X j e  ) } is (asymptotically) tight. 
Given 6 > 0 we can choose M > 0 and no such that 

n 

P ( z  ln- l /ExXj le / (e- l )<M) < 6 for all n a n , .  
j = 1  

Then for all n no and A > 0 

For K > 0 we have 

n 

< ~ ( 1  x ~ n - l l E x X j l l l ( e - l ) l ( n - l ~ l X j l  < E ,  n-'IExlXjl IUjle-' < K) uj( > AM) 
j= 1 

Keeping K fixed, we have by symmetry, using the equivalence of different 
moments of Bernoulli random variables (see e.g. Proposition 3.4.1 in [8]), also 
known as the Khintchine inequalities, 
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Here and in the sequel, c is an arbitrary finite and positive constant that does not 
have to be the same every time it appears. By the assumption (2.20) we have 

where a (E) -, 0 as E --, 0, SO that the right-hand side of (2.41) is less than or equal to 

since a, 2. Now (2.40) follows after letting K -+ co (we are using, once again, the 
fact that a,, 2 2), and so we have proved (2.22). 

Scenario 2. Suppose that 

(2.42) O < a x < l ,  O < a u < 2 ,  and au>,ax.  

We are now on one side of both critical boundaries (2.8) and (2.9), and the different 
ranges of 8 appear here depending on which of the two elements under the 
minimum in (2.9) is smaller. The possibilities are described in the following 
theorem. 

THEOREM 2.2. Assume that (2.42) holds. 
(a) Suppose that 

Then the exponent d in (2.7) is given by 

Specijically, in the non-boundary case 

we have 
ca; l/au D l/au (E [ l~~ l "u I (~ -~ ) ] )~ / ' ~  Sau(l,O,O) (2.45) nd A,, i. C e f i ( 6  - l)ax) D!/((B - lbx) 

(e - 1 )axle S(o- i)ax/e (1, 1, 0) 

weakly, with the random variables on the right-hand side being independent. 
In the boundary case 
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we have 

weakly, the random variables on the right-hand side above still being independent. 
(b) Suppose that 

Then the exponent d in (2.7) is given by (2.21), and (2.22) holds. 

P r o  of. (a) In the non-boundary case (2.44) we have 

The proof is parallel to that of (2.13). We use the notation of (2.24), (2.25), (2.26) 
and (2.28), while instead of (2.27) we use, obviously, 

with {Xj} given by (2.29). In particular, (2.31) still holds. We will show now that 

weakly as n -+ co. Since, by the CLT, 

weakly as n -+ co (see e.g. Chapter XVII in [7]), (2.49) will follow if we check 
that 

(2.5 1) fin - Nn -+ 0 in probability as n -+ co. 

Now, 

Hence, (2.51) will follow once we prove that 

(2.53) n-llau C Uj IXjll'@- -+ 0 in probability as n -+ co , 
jeKn(&) 

(2.54) n- l/au C Uj lzjll"O- 'I -+ 0 in probability as n -+ oo . 
j ~ K n ( & )  
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Consider (2.53). Let 0 < p < 1 A a,. This gives us 

Hence (2.53) holds, and the proof of (2.54) is the same, but easier. The rest of the 
proof of (2.54) is the same as that of (2.13) above. 

The proof of (2.47) in the boundary case (2.46) is the same as that of (2.45), 
except that (2.50) is now replaced by 

weakly as n + m (see [7]). 
The argument for the second part of the theorem is identical to that of the 

second part of Theorem 2.1. 11 

Scenario 3. The next scenario is 

(2.56) 0 < a u  < 1 and a, < ax. 

The possibilities provided by the different ranges of 8 are described in the 
following theorem. 

THEOREM 2.3. Assume that (2.56) holds. 
(a) Suppose that 

ax 8 3 -----. 
ax - au 

In this case the estimator (2.4) is not consistent. 
(b) Suppose that 

a u ax -+1 < 8 < -----. 
ax ax - a, 

Here d is given by (2.43), and in the non-boundary case (2.45) holds. Furthermore, 
in the only boundary case (2.47) holds. 

(c) Suppose that 
au @ < - + I .  
ax 

Here d is given by (2.21), and (2.22) holds. 
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P roof .  For part (a) we claim that An does not converge in probability 
to 0. Indeed, let d be given by (2.43), and notice that now d < 0. Since the 
reciprocal of the fraction on the right-hand side of (2.48) is clearly tight, we see 
that An cannot converge to zero (it is not even tight if 0 > a J(a,-a,,)). 

The proof of part (b) is identical to the proof of part (a) of Theorem 2.2, 
while the proof of part (c) of the present theorem is identical to the proof of 
part (b) of Theorem 2.1. 

Scenario 4. Suppose now that 

(2.57) 1 < a x <  2 and a&2. 

The two ranges of 0 we consider are on different sides of the boundary (2.8), as 
described in the following theorem. 

THEOREM 2.4. Assume that (2.57) holds. 
(a) Suppose that 

Then the exponent d is 

SpeciJically, in the non-boundary case 

we have 

weakly as n -+ co . 
In the j r s t  boundary case 

we have 

nd 2/(0- 1) 112 
(D2E Clx l l  1) N(O, 

(log n)'I2 A n  * E [Jx~J~/"- I)] 

In the second boundary case 
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we have 

(nd log n) A ,  a 
( E  [Ix112"8-1)1)112 (E  [U:1)112 

(0,  

weakly as n -, co . 
In the boundary case 

we have 

nd (log n)'I2 A ,  a (E  [IU1121)112 (0,  
D :I2  

Next, if 
ax a ,=2,  a,>2 and %=--- 

ax- 1 
we have 

2/(8-  1)  112 

nd (log n)li2 An * ( D 2  [lXll 1) (0,  
Dl 

Finally, in the boundary case 

we will have 

(b)  Suppose that 
2 +ax ax < % < -----. 

ax ax- 1 

The exponent d here is given by (2.11), and, in fact, in the non-boundary case 
(2.12), the convergence result (2.13) holds, whereas in the three boundary cases 
(2.14), (2.16) and (2.18), the convergence results (2.15), (2.17) and (2.19), respec- 
tively, hold. 

(c) Suppose that 

Here, the exponent d is given by (2.21), and the convergence result (2.22) holds. 

P r o o f .  (a) W e  start with the non-boundary case (2.59). Here 
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and the strong LLN applies in the denominator, while the CLT for iid random 
variables with a finite variance applies in the numerator. In the first boundary 
case (2.61) we use the general CLT for iid random variables in the numerator 
(see e.g. Proposition 5.3.3 in [9]). 

In the second boundary case (2.63) the CLT for iid random variables with 
a finite variance still applies in the numerator in (2.67), but the finite law means 
LLN no longer holds in the denominator. Instead, we use the weak LLN 

in probability as n -+ oo; see Theorem VII.7.2 in [7]. To see why this is true, 
note that the function p in (7.10), page 236 of [7], satisfies, in the case of iid 
random variables IXiI1lax, p (s) -- Dl logs as s -+ oo, and so the corresponding 
sequence (s,,) satisfies s,  - Dl nlogn, from which (2.68) follows. 

In the third boundary case (2.64) we similarly use both the general CLT 
for iid random variables and 'the weak LLN (2.64). 

The argument is similar in the fourth boundary case (2.65). Also similar is 
the last boundary case, (2.66), and we refer the reader to the discussion 
after (2.19). 

For the parts (b) and (c) the argument is identical to that of parts (a) and 
(b), respectively, of Theorem 2.1. 

Scenario 5. Suppose that 

ax 
ax > 1, 1 < a, < 2 and a, < ------ 

ax-1' 

The various possibilities detailing the side of the critical boundary (2.8) we are 
on, and the tail relationships between the random variables involved are de- 
scribed in the following theorem. 

THEOREM 2.5. Assume that (2.69) holds. 
(a) Suppose that 

Here the exponent d is given by 

SpeciJically, in the non-boundary case 
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we have 

In the boundary case 

ax 8 =r --- ax and a,<------ 
a,- 1 %- 1 

we have 

(nd log n) A ,  * 

wealcly as n -+ co, whereas in the second boundary case 

ax 8=-.----- ax and a, = - 
ax- 1 ax- 1 

we have 

Cu;lluu ( D  D2)lluu 
nd (log n)' - '/'u An * 

Dl 
SUU(1, 0 ,  0 )  

weakly as n -+ co. 
(b) Suppose that 

Here the exponent d is given by (2.43), and the convergence results (2.45) and 
(2.47) still hold, in the non-boundary and boundary cases, respectively. 

(c) Suppose that 

Here the exponent d is again given by (2.21), and the convergence result (2.22) 
holds. 

P r o  of. (a) Since in the non-boundary case (2.71) we have 

we can use the CLT in the numerator and the LLN in the denominator to 
obtain the result. In the first boundary case (2.73) we can still apply the CLT in 
the numerator, but this time we need to use the weak LLN (2.68) in the 
denominator. We treat the denominator in the same way in the second 
boundary case (2.74), but this time we use the version of the CLT given in (2.55) 
fgr the numerator. 
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The argument for the part (b) is identical to that for part (a) of Theo- 
rem 2.2, while the argument for part (c) is the same as that of part (b) of 
Theorem 2.1. 

Scenario 6. Suppose that 

(2.75) a x > 2  and a u > 2 .  

Here the different choices of 8 place the situation on different sides of the 
critical boundaries (2.8) and (2.9), as described in the following theorem. 

THEOREM 2.6. Assume that (2.75) holds. 
(a) Suppose that 

2 +ax 
8 > -----. 

ax 

Here d is given by (2.58), and in the non-boundary case 

2+ax 
8 > ---- and a, > 2 

ax 

we have the convergence result (2.60). In the boundary case 

2 +ax 
8>-  and a, = 2 

ax 

we have the weak convergence in (2.62), and in the boundary case 

8=-  2+ax and a, = 2 
ax 

we have 

weakly as n -;, co. 
(b) Suppose that 

In this case the exponent d is given by 

Specijkally, in the non-boundary case 
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we have 

weakly as n + co. 
In  the boundary case 

we have 

(2.80) (nd log n) A,  

weakly as n + co. 
(c) Suppose that 

Here d is given by (2.21), and the weak convergence (2.22) holds. 

P r o  of. The proof of part (a) is the same as that of part (a) of Theo- 
rem 2.4; for the last boundary case see the discussion after (2.19). 

In part (b) note that 

In the non-boundary case (2.77) we use the CLT for sums of iid random 
variables with a finite variance in the numerator and the LLN for iid random 
variables with a finite mean in the denominator to obtain the result. In the 
boundary case (2.79) the argument is similar, but this time we use the general 
weak LLN in the denominator. 

The argument in part (c) is the same as that of part (b) of Theorem 2.1. 

Scenario 7. Suppose that 

Ux a, > 2 and - < a, < 2. 
a,- 1 

Here the different ranges of 0 will determine which of the two elements under 
the minimum in (2.9) is smaller, and which side of the critical boundary (2.8) we 
are on. 
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THEOREM 2.7. Assume that (2.83) holds. 
(a) Suppose that 

Here d is given by (2.70), and in the non-boundary case 

the weak convergence in (2.72) holds. In the boundary case 

we have 
nd Cuiliuu (Dl D ~ ) ~ ~ ~ ~  

(log n)'Iuu An * E ,-Ix, ( 0 ~  - 11, SaU(1, 0, 0) 

weakly as n -+ co . 
(b) Suppose that 

Here d is given by (2.76), and in the non-boundary case 

the weak convergence in (2.78) holds. I n  the boundary case 

the weak convergence in (2.80) holds. 
(c) Suppose that 

Here d is given by (2.21), and we have the weak convergence in (2.22). 

P r o of. In part (a) the proof in the non-boundary case is the same as that 
in part (a) of Theorem 2.5. In the boundary case (2.84) in the numerator we 
appeal to the general CLT for iid summands to obtain the result. 

The argument for part (b) is the same as that for part (b) of Theorem 2.6, 
while the argument for part (c) of the present theorem is the same as that for 
part (b) of Theorem 2.1. EI 
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Recall that the exponent d describes the rate of convergence of the es- 
timator (2.4); see (2.6) and (2.7). Under each one of the seven scenarios this 
exponent is a different function of the parameter 0. 

We start with a plot showing how the scenarios partition the positive 
quadrant. 

Scenario 1 Scenario 4 Scenario 6 

Scenario 5 

Scenario 3 

FIGURE 1. All possible scenarios 

The exponent d describes the rate of convergence of the estimator (2.4); see 
(2.6) and (2.7). Under each one of the seven scenarios this exponent is a different 
function of the parameter 8. The knowledge of a, and a, allows us to select the 
8 that leads to the highest possible rate of decay of A,,, i.e. the highest possi- 
ble d. Recall that d (8) is a non-increasing function of 8 in Scenarios 1 through 5, 
and a non-decreasing function of 8 in Scenarios 6 and 7. 

What 0 do we choose if the a, and a, are unknown or rather we do not 
know them precisely? This is a common situation since the precision of even 
the best non-parametric estimators of the tail exponents is not very high; see 
e.g. [ 5 ] .  

Clearly, the tighter bounds on a, and a, we have, the easier it is to se- 
lect a good 8. In this section we will consider several possible situations. 
The reader is invited to consider additional possibilities. We will only con- 
sider the cases a, > 1 and a, > 1 here, as those are of relevance in empirical 
analysis. 

10 - PAMS 27.2 
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Suppose first that we know that ~ I 
a , > 1  and a , 2 2 .  1 

Then the choice of 8 = 2 always leads to the highest possible rate of decay of 
A,, i.e. the highest possible d. Indeed, if a, < 2, then Scenario 4 is in force (the 
boundary case a, = 1 does not distinguish between Scenarios 1 and 4), and 
since 

we obtain the optimal d = lla,. On the other hand, if a, > 2, then Scenario 6 is 
in force, and since 

we obtain the optimal d = 112. 
On the other hand, suppose we know that 

1 < a , < 2  and 1 < a ,  < 2. 

Then any choice of 

always leads to the highest possible rate of decay of A, (highest possible d). 
Indeed, Scenario 5 is in force and 

and we obtain the highest possible value of d = l/a,. 
Note that in the above case, and with the choice of 8 we are recom- 

mending, we will always have d 2 112. 
Unfortunately, in the range 1 < a, < 2, if a, can be bigger than 2, no such 

efficiency is possible. 
To measure the relative efficiency of a given choice of 8, let us introduce 

the notation 

where d (8; a,, a,) is the value of d corresponding to 8, a,, a, and 

d* (a,, a,) = max d (6; a,, a,). 
e > 1  

For a set A of (a,, a,) let 

inf R(B;a,,a,) 
( a x , a u ) ~ A  
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be the worst efficiency of a given choice of 8. We may then look for a maxmin 
value OA such that 

SA(OA) = max inf R(8; a,, a,):= RA. 
0 > 1 (ax,uu)~A 

If A 2  (2, m ) x ( l ,  2), then RA = 0. 
Indeed, for a given 8 > 1, choose a, so large that a,/(a,- 1) < 8 and let 

a, 4 1. Then we will be eventually within Scenario 5, and 

1 - l/a, 
R (8; a,, a,) = ------- -+ 0. 

11% 

Hence !RA(8) = 0 for all 8 > 1, and so RA = 0, as claimed. 
If, however, a, cannot be arbitrarily large, then things are better. 
Let a* > 2, and A = [I, a*] x [I, 2). Then any 8 in the range 

is a OA. Furthermore, 

To prove this, consider first the range 

Here, as in the case A = (2, m) x (1, 2), we see that !RA (8) = 0. Next, we con- 
sider the range 

Note that 
8 

inf R(O;a,,a,)=--a* 
(u,,~,) x A 8-1 

and is achieved when a, a* and a, J 1. On the other hand, 

L 

inf R(O;a,,a,)=- 
(ux,uu) x A a* 

uu>uxl(ux- 1) 

and is achieved when a, 1 a* and a, 2. Therefore, in the range (3.4) we have 

if (a* + l)/a* < 8 < (a,' +2)/(a,' - a,+ 2). Furthermore, we have !RA (0) < 2/a* if 
(a,' + 2)/(o1,' - a, + 2) < 8 < a*/@* - 1). 
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Similarly, in the range 

we obtain 
!RA (0) = 2/ah. 

Therefore, both (3.2) and (3.3) follow. In this situation we can guarantee 
d 3 2/(c~*)~ with the choice of 8 recommended above. 

The above discussion of the ways to select the parameter 8 focuses on the 
rate of convergence to the true value, which is clearly the single most important 
criterion. With the rate of convergence kept fixed, however, other things be- 
come important. Among them is the spread of the limiting distribution. To 
compare such spreads, and hence to be able to tell more about good ways to 
select 8, we performed a simulations study. 

Design of simulation. From the viewpoint of empirical evidence, we con- 
sider a, E [I, 2) and a. E [I, 2). TO implement data-generating processes, we 
have selected a,, a. = 1, 1.2, 1.4, 1.6, 1.8, 1.99.4 For sample size we choose 

FIGURE 2. 9 for selected a, and a, 

In order to better see the behavior of the estimates near the boundary points 1 and 2, 
a more detailed selection was used in another simulation. The results show that the transition from 
1 to numbers bigger than 1 (1.01 and 1.05 were additionally chosen in the simulation) and from 2 to 
numbers smaller than 2 (1.99 and 1.95) is smooth. 
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n = 50, 100, 250, 500, 1000, 2000, 5000, 10000 and co, where the limiting 
distributions are calculated from Scenario 5. We use a length of quantile 

- as a spread measure, where t, is the p th quantile of the simu- 
lated distribution of (2.5). According to the recommendation in (3.1), we use 
0 = (1, 1.51. For implementation we have selected 0 = 1.05, 1.1, 1.15, 1.2, 
1.25, 1.3, 1.35, 1.4, 1.45, 1.5. To determine simulated densities for each estimate, 
10 000 replications were made. Figure 2 shows the 0 minimizing the spread for 
selected a,, a, and sample sizes. 

The selected 0 shows noticeable irregularity, even for large samples. Never- 
theless, some useful rules for choosing the 0 can be formulated as 

Here, the parameter a, plays a key role, while the role of a, and the sample size 
seem to be less important. 

4. CONCLUDING REMARKS 

One can see that blindly using the OLS approach 0 = 2 can lead to very 
inefficient estimators of the regression coefficient. A much better approach is to 
take the tails into account. Even if the tails of the regressors and disturbances 
are known only approximately, this can still provide valuable information for 
selecting a good value of 0, and hence constructing a more efficient estimator. 
Iterated procedures in which the tails and the regression coefficient are es- 
timated simultaneously should be considered. 
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