PROBABILITY
AND
MATHEMATICAL STATISTICS
Vol. 21, Fase, 2 (2001), pp. 277-302

EDGEWORTH EXPANSIONS FOR L-STATISTICS
BY

VO B. ALBERINK (NumEGEN), GYULA PAP (DEBRECEN)
AND MARTIEN C, A. vaN ZUIJLEN (NUMEGEN)

Abstract. We study the approximation by a short Bdgeworth
expansion of the distribution function of normalized linear combinations
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of order statistics of n independent random variables with common
distribution function F. Under the assumptions
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for some py, ¢, 1y €R, pa, 3. 72, € 2 0, k[0, 5/4), with an appro-
priate balance in these parameters, and under additional moment con-
ditions, the rate of uniform convergence is shown to be of order n™ 1.
Moreover, a special case is considered where the ¢, are generated by
a sequence of weight functions of a special structure.
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1. INTRODUCTION AND RESULTS

Let X, X,, ..., X, be iid. random variables with a common distribution
function F. We put f,:= E|X|* for all s > 0 and suppose throughout the paper
that i, < +00. We shall consider the statistic
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a linear combination of order statistics. Here X ;.,, denotes the j-th order statis-
ticof X4, ..., X,and ¢y, ..., C,, are given constants. We will assume that in all
cases E|T] < 4 0.

For any symmetric statistic T = T(X,, ..., X,) with E|T| < +oo, let

Ty:=E(T|X)—ET, T,:=E(T|X,)—ET,
Tiz:=E(T|Xy, X5)—E(T|X)—E(T|X)+ET
and for 1 <i,j<n write
E,T:=E(T| Xy, ..., X4, Xi44, .., X)) and E;T:=EE;T
In addition, write
D, T:=T-ET, i=1,...,n,
and
fo:=EW'?TF, y:=EW*?Tyf, 45:=Ep*?D,D,DsTF, s20.
Finally, for 6:= \/ﬁ;f >0, let
g:=1— sup  |Eexpf{in'?T,}|
{elel62/283,/nié)
and

n:=E@P2T)P+3En?T, T, T,,.

CLIS "

From now on, by ¢ and C we shall denote absolute generic constants: if
such a ¢ or C depends on, say, o, we will write ¢(z) or C(2). By @ we shall mean
the standard normal distribution function. Moreover, I {A} will always denote
the indicator function of event A.

Receutiy, a short Edgeworth expansion for symmetric statistics has been
obtained in Bentkus et al. [2]:

@ 6< ﬁ(ﬁ“ﬁ—ﬁ 2)

é¢* 6 g

We shall estimate

(1) d:=sup|P

xR

In Lemmas 1, 2 and 3 of Section 2 we will derive explicit expressions for
B4, 73 and A2 in the special case of linear combinations of order statistics.
These lead to precise upper bounds for these quantities in terms of moments of
the underlying distribution function F, and hence to a short Edgeworth expan-
sion of order n™! for T, where the upper bound is given again in terms of the
moments of F. The proofs are given in Sections 3, 4 and 5. Note that the results
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of Helmers [3] are not applicable because here the weights are assumed to be
of the form

j dfn
= J(n+ 1) or  ¢p= nu:g”n.f(t)dt
with a single weight function J: (0, 1) — R. In Section 2.7 of Bentkus et al. [2] this
same structure is used, whereas it is also assumed that sup, |/ (x)| is bounded.

We assume the quantile function F~* of the population to be differentia-
ble and for x > 0 we set

K =K(F, ©):= sup [s(1—s)]*(F1Y{s).

se(0,1)
For
dy 1= max n™ I:i(
1€j<€n n /A
, i1\ e
3) dgzzzxg?gﬁn‘“[%( -n%fz—“):] l€n— €5~ 1.1l
j=1
@ dai= o B (I “'T)] it

we have the following theorem:

TurorREM 1. Let xe[0, 5/4), and py, P2, 91, G2, ¥y, ¥3 be real numbers
satisfying pz, g2, v2 2 0. Then there exist constants C and ¢ = c(p;, 41, 12, K)
(independent of n) such that for any n we have

5£qc ( 7 (A2 Ba+tcAt K2 +- 3(53ﬁ3+e331§3)+ nz(Czﬁz+cq‘;2Kz})

where
Ay =n"""1{p; = pa},
—n I {py <p)
x (I {ic+pa < 54} +1{ic+p, = 5/4} logn-+1 {xc+p, > 5[4} n**r2=31%),
B, =n®*1"0 Hgs > g +1},
B,=n'""I{g, <g,+1}
x(I{r+q, < 5/3}+1{x+q, = 5/3}logn+1I{k+q, > 5/3}n**92753),
Co=n2"2""1{r, 21,42},
Co=m*""1{ry <r,+2}
x (I {rc+ry < 5/2}+1{xc+ry = 5/2} logn+1 {xc+7, > 5/2}n**r27512),




280 I. B. Alberink et al.

The proof of Theorem 1 is based on the fact that

Pa < CdF (A} BotcATK?),

©) 73 < Cd3(BR Bs+ B K3),

| 43 < Cd3(CE Bo+cCr KP),
where ¢ = ¢(p;, g3, 72, k), which follows from Lemmas 1, 2 and 3 in combina-
tion with Lemmas 4, 5 and 6 (Sections 6, 7 and 8). (From Lemmas 4-6 it also
follows that we may take C = 27.) By (2), Theorem 1 then follows immediately.
Note that X, ..., X,, T, f., 7., 45, 4, n, dy, d, and dy all may depend on n.

The following corollary is a direct consequence of Theorem 1. It is the
analogue of Corollary 4.2 of van Zwet [7].

COROLLARY 1. In the special case where py = p, =g, =1, =0,9, = 1 and
ry = 2 we have under the conditions of the theorem:

C gﬂa d%ﬂa d”%ﬁz
sm . ,
o q%( a4 * G + G°

where C denotes a universal constant. If B, < + co, both 6* and q are uniformly
bounded from below and d,, d, and d are uniformly bounded from above, this
provides an Edgeworth expansion of order n~* for T

Next we state the analogue of Theorem 3 from Pap and van Zuijlen [5].
Let y: (0, 1) » R be a Lebesgue measurable real-valued function on (0, 1) and
y a real number. Taking J: t—y(¢) [t(1—£)]™?, we consider the weights

in
(6) Cwi=n [ J(t)dt
(j=1)n
and
) T
(7 cjn.mf(n+1).

We start by quoting Theorem 2 of Pap and van Zuijlen [5], a Central Limit
Theorem. Assume that the weights c;, satisfy (6).

THEOREM 2. Suppose that 0 <y <% and that there exist numbers A = 0
and % > % such that W ()—y (s)} < Alt—s|* for all s, te(0, 1). If B, < + 0 for
some m > (5—7y)~*, then

T—ET SN0, 6*, F) and  62(T) - 6>y, F),

where

11
6%y, F) = g g[’s(lms)tu-—r)]"w(s)npm»(min(s, t)—st)dF 1 (s)dF 1 ().

In the case of weights (7), we have the same results.
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Assume we take our weights of the form (7). The announced Theorem 3
reads as follows:

Tueorem 3. Suppose that ke[0, 5/4), v > 0, k+y < % and that  is twice
boundedly differentiable. Then there is a constant ¢ = c(i, y) such that

c (K*IIl% K"’ (I’ Ilm+|!ilfilm)3 K2 (I llo + I Nlco + 1] )
g*n\ é* ¢* 62 )

A theorem similar to Theorem 3 can be proved in the case of weights of

the form (6). The proof of Theorem 3 will be given in Section 9.

Remark. Suppose that, instead of (6), for 6; =0, y,,722>0,6,>0
we consider weights of the form

0K —5—

Jin
epmi=n [ J,(0dt, where J,( Z U@ [t =] *n~%,
{i—L}m i=1

Using the same techniques as in the proof of Theorem 3, it is not too
difficult to formulate a counterpart of the theorem. Of course, all expressions
get more notationally involved. Naturally, we can go on in this way.

2. THE BETA DENSITY AND SOME FUNDAMENTAL LEMMAS

From now on we pretend that X; = F~*(U}), where U;,j=1, ..., n, are
iid. random variables such that all U, have the uniform dxstnbuhnn on the
interval (0, 1). As usual, for any sequence S, ..., S, of random variables the
order statistics Sy, ..., S,, denote a reordering of that sequence such that
Si.. <... < 8,,. For any subsequence S, ..., S, of Uy, ..., U,, by convention,
S_340=280,:=0 and S,,, =8,+2,:=1; for any subsequence S, ..., S, of
X4, ..., X,, by convention, S_,, = 8y, := —c0 and S,41y = Spi12,:= +00.

The beta density will play an important role when we examine y,. For
1 <k<litis defined by

-1\, _.
b= g Y ’uz(k t)ﬁ-l(ps)!“k (sefo, 1]). -

By convention, by ;= bg;:= byiy,;:= bys,; = 0. We note that b, is in fact
the probability density of U;,. Furthermore, we set Pj(k):= P(X = k) for
a random variable X which is binomially distributed with parameters | and s,
that is, for se(0, 1) we set

i
s (l—s)* for k=0,...,1,
®) Pi(k):= (k) (A= for

0 for k¢{0,..., 1}
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The following simple equalities will be used in the sequel: for 0 <k < I+ 1 we
have

1 :
by—14-108)=Dby -1(5) = ?b;a,x (5) and (I—K) b () +kbrsr,(5) = Iby—1(5),

and hence

) v k
)] b (8)—bri-1(s) = mﬁh 1041 (8);

for all 1 €k <! we have

(10) byu(s) =P (k—1) and [[by;—by,-1](t}dt = sP}_; (k—1).
1)

Note that for each le{l, 2,...} we have

(11) i by (s) = Zl: Pi_j(k—1)=1

k=1
Moreover, for all 0 <k <!
(12)  Pi(k) = sPi-; (k—1)+(1—s) P]_, (k)
= Pi_y(K)+s[Pi-; (k—1)—Pi_, (})].
We also have (by application of (9)) for 1<k <1:

(13) i(bkml.lml_bk,z}mdi =(1—3s) P}, (k—1).

The next three lemmas are crucial for the analysis of f, = En!/2 Ty|*,
3 = E[n*? Ty,)® and 43 = E|[n®2 D, D, D5 T|2. The first one has already been
mentioned in van Zwet [7]. The second and the third one will be shown to be
correct in Sections 4 and 5. Some preparations concerning conditional dis-
tributions of order statistics are made in Section 3.

Levma 1. We have:

1= oy o i
n2T == el [ shia(dF (5= [ (1—9) by (s)dF T (5)}.
njtﬁl 1] U
Lemma 2. We have:
n nod 2 Uiaszz o . _—
nP Ty =—= 3 (=) {1 (=1 | &7 (L=sfbju-s(dF 7 (9)}.
nmijmi i=0 Uiz

Next we set Ko 1= 0, K4 := n+1 and define K; < K, < K3 as the ordered
ranks of X;, X, and X; among X,,..., X,.
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Levma 3. We have:
(149 n'*(DyD,D5T)

3 ,K{J—)’i"l"i ‘ Ujeteim . .
= Z (“‘1}‘ Z ((:j+1‘,,—‘2ﬂj,,,-+cjm1,,,) j. SBMI{I_S)IdF"}‘(S)H
i=0 j=Ei+ 21 Uj’l#i:n

3. CONDITIONAL DISTRIBUTIONS OF Uy,

3.1. The conditional distribution given U; and/or U,. In order to analyse
73 we clearly need the conditional distribution of Uy, given U, and/or U,, since

73 =En*2 TP =E|n Y ¢ H?
j=1
with ’
(15) Hj=E(X;u|X s, X5)—E(X ;| X,)—E(X ;| X5)+EX,,
=E(F ' (U;)|Uy, Ug)—E(F ' (U | U,)
~E(F™(U;) | Uo)+ EF Uy,
From elementary considerations the following results can be deduced. The
conditional distribution of Uy, given U, is given by
Pyv, = bjn—1 LounA+PUj = U by, +bjyn-1 Yip,, 114

where A denotes the Lebesgue measure on R, gy, is the Dirac measure in U,,
and

 [Bjm 11 () —bja-1 ()1ds  for j=2,...,m,

P(U}'m = Ul) = 1 ; . )
jui iibj,ﬂ"l(s)‘“b"wiim"]{(S)] ds for = L..,n—1

Of course, we obtain the conditional distribution of Uy, given U, after sub-
stituting U, for U, in these results.
The conditional distribution of Uy, given U;, U, in turn is given by

ijmi’vum = bjm"‘z IEﬂuULz]’z"II_P(Uﬁﬂ = UL:Z) 501:2 +bj-1,n\—'2 lm::zﬂz;ﬂ A
+P (U = Usi2) 0y, + 022 Liwsaay As

where
Us:z
P{Uj:n = UI:.’Z) = s [.bj*l.nwz(S}“‘bjm—l(s)] ds for j= 2,..,m,
0

1
P(Ujp=Ujz,) = J [Bj-1,n-2()—bj-24-2()]ds for j=1,...,n—1,

Uz
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and
Uy 1
P(Ulm =Upa)=1— J. bl,n‘-‘z (S) ds, PU,,= UZ:Z)‘ =1 5 bn»—-z.n—z(s)d&
O

Uz

3.2. The conditional distribution given n—3, n—2 or n—1 of the Ujs. In
order to analyze A2 we need the conditional distribution of Uy, given n—3,
n—2 or n—1 of the Ujs, since 43 = E[n*?D; D, D5 T|?, where

DyD;D3T=T—E  T—E;T—E3T+E 3 T+E;3T+E;3T—E; 33T,

and hence
1 2
DiD,DyT=—= % ;M
14283 ﬂz‘;l § J
with

Mj i=DyD; D3 X}, = Xj:n"*EJ. (Xj:n)*Ez (Xj:n)_'Eﬁ‘ (Xj:n)
+E1 3 (X )+ E13 (X jon) + E23 (X ji) — E 123 (X jun)-

To obtain the conditional distribution of Uy, given U,,..., U,, given
Ul: U.’:s weay Um gh’en Ula UZ: Ud-s reey U?r.i giVBﬂ Ug, LRRE] Um given
Ui, Ugy ..., Uy, given Uy, Uy, ..., U,, and given Uy, ..., U,, respectively, we
define subsequences of X, ..., X,, and U,, ..., U,, respectively, by

(Ala sery An“l}:m (X.’»La X3, D, IS Xu)s
3 (Bh AR ] Bwkl) = {Xvi: XB:' X47 AR X'n):
&U(Cl! weuy Cil“'i’)‘ S (XI’ ‘X.'Z,ﬁ X'cl«» weay Xn)s

(A'T‘fa xuey A}T;‘;ﬁ} = {Uiz US\:’- Ud-a LRRE) Um}a
9 (-Bfa raay Bﬁ*l) = (Uiu U:h H@i seay Un 3
u(C;" seny C;r—l) .= ‘[Uls U,, Ugs oo Un)s

and

(Pn e Pyog) 1= (X5, X4, .., X, ] (PL, . Pa?w:z) 1= (Us, Uy, ..., Uy,
@1y - Qu-2) 1= (X3, X4, ..., X))y (@, ... @5-2) := (U, Ua, ..., Uy,
)

|

(Rys ooy Ry—p)i= (X, X4, ..., Xo)s (Rf, ees RiT-«uz = Uy, Ugs oos U,),
and, finally,
(Tli ey T;,.-s) L= (X.d_, vaey Xn)m (TT, vwey T:wg} o= (U4, suay U,J.
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Remember that X; = F~1(U)), so that
E;X;y=E(F '({Up)| Uy ...Uy) forj=1,...,n

and so on.
As can be checked easily: the conditional distribution of U, given
Af, ..., AF, is determined by

Py sttty = Af-1m-1 Oay_ oyt lias s, A+ '“"'A;mel)ﬁajm_ -
and hence
E(FVI(UIH)IATa ey A;:e‘i)
A}:nﬁl
= F AL - ) A a0 FTHOds+F 7 (A ) (1= Afm ).
A}“lmml

Therefore, by partial integration we obtain
AJ:n'- 1
(16’) E{Xj:niAla very Annl) =Aj-1:n-1+ I [l—F(tH dt.
Ajv« FEE T

The conditional distribution of Uj, given either BY, ..., By_; or CT, ..., Ch-y
can be dealt with in exactly the same way.

Next we look at the probability distribution of U, given PY, ..., Py_; or
QF,...,0F , or R}, ..., R¥_,. We obtain:

2
Pa}mlf’?w-a"ﬁ»z = 2; S Ilp‘*:ﬁ*l:nul"!}?‘ z.wm—z}’l

2 b ) N
+k;0 (k) [Pf"“Zﬁmk:nwz]Z k(l_Pﬁ-ﬂ +k:‘ﬂ-‘2)kéi"}q+kmn3;

where g,: st—»25 and g,: s+ 2(1—s). Therefore

2 P;wz-mn»z
E(FMI(UijPT,..., P:L,E): Z j FMI(S)QIQS)dS
=1

P;—a{'l!n’ﬂl
2 2 -
+ z F 1(P}B‘-z%-k:n”z)(k)!:P}k—z-H::n*Z]z k(lmP,?WZ-i-k:n”Z)k'
k=0

Partial integration leads to

Pj--i:n-l
{17) E(Xj:nlplw“-s Prs*l)apiwlm—z”l“ j, [1~F2(t)]dt
Pi“ =2
’ 'ij‘i
+ | [1-F@]*d.
P}“l:nﬂz

Again, the other sequences can be dealt with in the same way.

3 — PAMS 212
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Finally, for T%,..., Ta-3 we note that

-
Puimir?‘“"ﬁﬂs = 12‘1 h'! ltﬁ‘dd-i:nwl"ﬁuﬁm-ilmmsj‘f’!

373
+ Z (k) [T?m;3+k:n—3}3m&(l_T?——S-ﬂ-k:n*a)ké??*%um“aa

k=0
where hy: s+>3s% hy: s+>6s(1—s), and h3: s> 3(1—s)%. This leads to

:r;'fl-}hn—i
i F~Y(s) y(s)ds

3
=1 Jedsln-3

E(F ' (Up)|TY,.... Ta-3) =

3 3
+ Z F“l(T;Fua%*km—S)(k) [T;F—*E-ka-‘&]a—k(j‘_T?—:&i—k:w*:&)‘ka

E=0
which in turn leads to:
(18) E(Xj:n I Tla« == T;:'—'Z!)'
2 Tijessmn-3 {2-m 3
STt X AL () FOI-FOPa

m=0T; 3emn-3 K=0

4. ANALYSIS OF y;: PROOF OF LEMMA 2

Recall that n*? Ty, = n) ., ciu Hy, with H; as in (15). With the results of
Section 3, for all j we are able to give the following explicit formula for H;:
Uiz
Hj= [ F7*(8)[bjn-2—2bjn-1+b;al(s)ds
0
Ugiz
+F 1 (Uy.2) j [bj-1m-2—bja-2—bj-1,4-1 +bjn-11(s)ds
0
Uza
+ | F ) [bjmrmm2=bj-1a-1~bja-1+bya1 ()ds
Ugz
1
+F Y (Usz2) | Dhj-1m-2—bj-2n-2=Dbju-1+bj-1,n-11(s)ds
Uz:z
i
+ [ F7 () [bjm2m-2—2bj— 1 .0-1+bjnl(s)ds.
Uz:a

We are looking for an alternative form for H;.
We use partial integration on the first, third and fifth term of this expres-
sion in order to obtain this nicer form. For this purpose we define the following
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three indefinite integrals:

I(s):= j [bjn—2—2bjn-1+b;,](t)dt,
0

L(s):= f[bj-1m-2~bj-10-1—bja-1+b;,] (£)dt
h
and

g V
I3(8)i= [ [bj-2p-2—2bj— 1 n—1+b;, ] (t)di.
0

Application of (10) and (13) leads to the equalities
L) = —s (P2 (i—)—Pio, (- 1)},

I,(s) = ""S{Pi—-z(f*‘z)"—Pfiﬂ G- 1)}
and

I3(8) = —(1=5){Pr- 1 (—1)—P;-2(j—2)}.
As E|X| < + o0, we have
mF (s)I,(s)=0 and BLmF 1(s)I3(5)=0.
510 511
Now the first term of the expression for H; equals

Uyes

[F~ ()1 ()16~ ! I (s)dF~*(s),

and so on. Substituting these forms in the expression for H; we see that the
second and fourth term cancel and we find that

Ei:z Uz:z
‘§—£Q®W‘®~I&@H‘M“Ihwﬁiw

Finally, app]icatinn of (12) shows that

Uitz
H;= Z( D] ST A=) P2~ )= Pi-2 (=2} dF T (5).
U2
Consequently,
n a1 2 Vigaea .
2 CJHH}L_’ E {cjn“cjﬂi'l,n){z (Hl)l j 32‘5{1 _ﬁ)fpi%z{}'_‘nd}?“l(s)}’
i=1 i=1 i=0 Uz

and hence the statement of Lemma 2 follows readily.
We remark that a proof of Lemma 1 can be easily constructed along the
lines of the proof of Lemma 2.
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5. ANALYSIS OF 4%: PROOF OF LEMMA 3
Summarizing the results of Section 3 we see that

DlDZDST:

1 n
ﬁigx Cjn Mjﬂ‘

where (see (16)—(18))

E

Mj == X;,—"““ z (E'jv—-l:“—ml + j {l ""F(:t)} dt)
Ee{A,B,C} Ey sm-1
F}w‘n:nw?, ) Fj‘m“z ‘
+ Y (Fiezm-2t [ {(1-F@}di+ [ {1-F(@)}*dy)
Fe{P.Q,R} Fj«zm«-z Fj-w!:nNX

__(7}—3;.w3+ i Tf"z'};m‘"“s {z’im G,c) F(t) ﬁl,mF'(tf))a""*} d;)«,

m=0T; 3,pmp-a VE=0

As mentioned in Lemma 3, we denote the ranks of X, X, and X5 in
increasing order by K, K, and K,. With the aid of the given ordered ranks of
X, X, and X5, we are able to reconstruct the order statistics of the X’s from
the ordered A’s, and so on. For example, for X, < X, < X, we see that

(Agm=15 e Axiéimﬂls Agin—15 00 An—1m~1)
= {X‘lmﬁ vy Xxl“l:na Xﬂ:rl-l:n: LR RE] X;x:;n)'

From this point on it is a matter of careful bookkeeping to find out that (14) is
correct, which completes the proof of Lemma 3.

6. AN UPPER BOUND FOR f,

In the next three sections we will prove (5), from which our main theorem
follows. The three lemmas that will follow, Lemmas 4-6, precisely state what
we need.

First we prove a lemma concerning .. In the following we repeatedly use
the IP-norm |[T||,:= {E|TJ|?}*/* (p > 1). For the following three sections, let
A,, A,, B,, B,, C,, €, be as defined in Theorem 1.

LemMa 4. There exists a ¢ = c(p,, ) for which
fi* < 2d, A, BY* +cKd, A,.
Proof. First we note that

(19) EXI= | (1—F(9)ds+ {f F(s)ds
0 bt
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and

dy 2n 7P eyl,  dy 2t T Rc,—cioql,
(20) A3 Z 0" e 0 —2Ci+Cio 10,
since

lgi(l—{——i) for 1g€j<n.
non n

Hence Lemma 1 leads us to

ditnP P22 Ty < - i {j' sb(s)dF~ 1(s)+[ 1—5)b;,(s)dF~*(5)}
= j sdF~1(s)+ j (1—s)dF~'(s) (see (11))
4} Uy

= | FQdt+ | FQdi+ | (1—F@)di+ | (1—F(@0)ds
e o X1 0

S E|Xy|+|X4|  (see (19)).
In the case where p, > p,, this shows us that
1) ¥t =|In"? Tyl < dy w2 P (|E Xy lla+ 1X 1 lla) < 24, 4, P54,

which completes the proof for p; = p,. V
Next we consider the case where p; < p,. Note that

Bi* = lIn*? Tyjla

nplﬂ Jil [n(1 _%>]"Pz

1
x {[|£ sbj',,(s)dFﬂ(S)lLﬁ—M (1—s)b;a(s)dF~ (s),}-
A little later we will show that for j=1, ..., n and some ¢ = c(k)
Uy ) ] 1—-x j—l /4~
@ I shinrarol, < e (1) (1-22)7
1]

By symmetry arguments we have

1] A=9b,,©dF- @), < K ({)”"'"“(1 _1:3)1

so that

N , i j1\uex
“ ‘{Sbm(s)dF-l(g)“ﬁ” ] (jms)bj,,,(s“)dF'l(S)”‘;éZCK[-T;( - )] :
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and therefore

n : s [1/4 K- p2
ﬁm < 2cKd, n""m% E [Jﬁ(l_ﬂu)il@ .

=ln n

In order to study the behavior of this expression we approximate

S-S

by integrals of the form
1—-1i/m

{ [s(l—gyte—nr2gs,

i/n
Constants which appear over here depend on x+p;, so at the end we have
constants depending both on x and on p,. Doing this it follows easily that also
in this case the result of Lemma 4 applies, which completes its proof, provided
that (22) is correct.

We turn to the proof of (22). We remind the reader of the gamma function
B
s> [ ¢ tedr
¢}

and the beta function

B(u,u"wjt’" L1—gptdr,

satisfying
; , Fwr (v
(k4 1) = k! , } e ‘ = .
I'tk+1)=k! and B(u,v) Twis for all keN, u,v>0
It is known (see, for example, Lemma 2 in Pap and van Zuijlen [5]) that
s LAY, | ;
@3) CL0) < g TR < C0) for k> —y.

Suppose that je{l,...,n—1} or k < L. As

5 (8) = bju.,u,l'ﬁ)

+1

we have
AN S
!Hsb,,.(s)df Ll = (~—-’-) (fbmﬂas}dﬁ L)'

41
i{(wgw> {jbf+1,n+!(s)dF 1(3))’ E j bjrin+1()dF™ H(s)-
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Moreover,

(n+1)!
jtn—j)

I'n+2) r{+i—x)n—j+1—x)
F(n+2=2x) I'G+1) T(n—j+1)

<, K(n+22(+1)"*n—j+1)7% (see (23)

(I (r=U=DYF ify_I-1\|™"
,,,,,,,,,, < EX I P
<o) (57) eeri(-0)]

for constants ¢; and ¢, depending on x, and

fb;+1n+1(5)dF 1()<K 7 BU+1-x, n—j+1—x)

U, it
E j' bis1ae1 (NF 1 (s) = ”bjﬂ,wl (SY(F~1Y (s)dsdt

(n+ I)

= .[bi-id n+1(3)(F 1) {S) {Idt} ds < K ISJ ©(1— )ﬁ»—-j_;.rl_..,,:ds

I'in+2) TI(j+l—-)I'(n—j+14+1-x)
Fn+2+41-2k) I'(j+1) I'in—j+1)

ARl 4 gm 1*?(:
< c;K(g) (1_.%!)

for some constant ¢, = c;(x). Thus

Uy R AN i—1\1—4x
(§stoar-sot: < (45 denre(5) " (1-57)

N\ 4(1—1) F_1\4/a—x)
<) ()
n n

for some ¢y = c4(x), which proves (22) in the case where je{l,...,n—1} or
i< 1.
The cases which remain are more difficult to handle, as they imply that

=K

1
jbﬁ 11 ()AF 7 Hs) = + 0
0

This is why we use a different approach. For j = nand xe(1, 5/4) we will prove
that for some ¢ = c(x)

Uy ‘
1§ Shu(9dF~1 )], < cKne=35,
0
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Namely, we have
Uy I Uy - 4
] sbun()dF~(s)[; < ||| ms" K [s(1—s5)]"*ds][}
0 0

Uy 1
=K*n*E([ s #(1—s5)"*ds)" = K*n* [(] " (1—s) "~ ds)" dt
0 0 Q

1 =g+17H N4
< K*n* f o= ([%] ) dt
! - 0

=(§_"_) B(4(r—1)+1, —4(x—1)+1)

Kn I'(dn—dx+1)
""( *1) RS 7 oy P g

< Cy K"‘ n4‘ (4,1__4;{_}_1)“(5 — i) g cy K4 nf%g&z

for some c,, ¢;, depending on k. This again proves the point.
Finally, we take up the case in which j=n and x = 1. The previous
argument does not work as we divided by x—1. We show that for some C

by Uy ;
] sbun(s)dF 2 (s)][; < CK*n®  or  ||f s '(1—s)"tas||s < Cnt.
0 o

Ronald Kortram (personal communication) provided us with the following
proof. The function s+s"~*(1—s)*/* is increasing on [0, Imlj(fln 3)] and
decreasing on [1—1/4n—3), 1]. So

If ot a9t asl

wl“-I!;MME) !Sm-l(l__s)l/'d, 4 1 tS"mi(l-“S)lm )4
= (g—”"'—“u_s)m ds) dt+ | (J—“‘—'——(lms)s/a ds) dt

0 1=1j{4n—3) \0

T e[

1 1 ([(1 S)“ 1;‘4]! )4
+ dt
1—«1/(!;"—3)4"_3 1/4 D

1 4+ 1
<4ttt —— (L~ Y dr < Cnt

for some constant C. This completes the proof =
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7. AN UPPER BOUND FOR y;

The aim of this section is to prove the following lemma:
Lemma 5. There exists a ¢ = c(q,, x) for which
73 < 3d, B, B33 +cKd, B,.

Proof. First we consider the case in which g; > g, + 1. By Lemma 2, (11),
(19) and (20), the method we have used to prove Lemma 4 in the case where
Py 2 p, yields

dy 1T 32 Ty, < E X+ +1X).
(Here we also used the inequality F~1 (U,.,) = max (X, X,) < |X,|+|X,|.) As
a consequence
y3® = |In*? Ty,lls < 3d, B, B3P,

which completes the proof for g, = ¢, +1.
Now suppose that g; < ¢,+1. By Lemma 2 and (3) we have

) p "oi B i j— 1\ |72
P3P = |[n*? Ty4lls < ") Y dyn q‘l:‘{(l “‘”L—)} s+ 2 s+ 34l
n— i=1 n 7 | '

where for i=1,2,3
Uiz
(24) Fij’ .= j 83*1-(1 “*“S)imi del (S)u

Ui-1:2

First we determine the order of ||[I'y;lls. As

j+1\2
§°b;p-1(s) = (J—n") bisane1(s)

we have

R 6 Uy.a
i3 = (;i_-f) E( g Bitan+1 (s)dF~* (S))a

and we can find an upper bound in the same way as we did for
ME‘ sb;a(s)dF ' (s)||, in Section 6. Again we have the following three cases:
M j=1,..,n—lork<1, (i) j=nandxe(l,5/4), ()j=nandx=1;

again in each of them the result is the same and the methods to prove them

differ considerably. We confine ourselves to the first case. We have
I'(n+2) r(j+2—«)I'(n—j—x)

r(ji+2)Irrin—j I'(n+2-2x)

1
jbf+2,n+1(5)dF—l(S} <K
0
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and
iz P s gy ;
| v T@+2)  T+2-1 (—j+2—K)
. 1) < , ,
Ef breanes OAF O < K e e 5 Pt d—209

which for some ¢ = ¢(k) leads to

j 2~n ‘ ]—1 2/3 -
< cK|(= . :
M lls < cK (n) ( ” )

By symmetry arguments we see that

A 2135k s 1\2Z2-x
nrs;sfaéax(r’l) (lwf’——l) .
n n

Moreover, we find that for some ¢ = ¢(x)

A1k i 1\4/3-x
!lir.Zjlia <cK (;Zz) (-:Lr—z—) .

In conclusion, for some ¢ = ¢{k) we have

SN2~k —IN\NZE3
@9 Wty <ok () (1507

so that

. 1r—1f 3 1 2i3—k—qz2
73 < . i i dy cKn? ”4’—1~ Y [-]-(1 _Z_i)] ]

In the same way as in Section 6 this leads to the result mentioned in Lem-
ma 5. The second and the third case can also be handled with the approach of
Section 6. m

8. AN UPPER BOUND FOR 43

We will prove the following lemma:
LEMMA 6. There exists a ¢ = c(r,, k) for which
(432 < 4d5 C, B3* +cKd5 C,.
Proof. In the case where ry > ry+2, like before we deduce that
d3 a2 Dy Dy Dy T| < E|X | +1X 4| +1X,|+1X |,

s0 (43)Y% = |[n*?D; D, D3 Tll; < 4d3 C, B3>,
Now suppose that »y <r,+2. By Lemma 3 and (4) we have

(26) (43)'7 = [n°2 Dy Dy Dy Tlla < dsn® " (| 44lla + 1451l +1145]l +1144ll2)
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with

Kiwa+1~i j j"‘“l —rg Ui=148n X .
diori= 3 [w( _.__..)} [ S i(—sfdF'(s) fori=0,1,2,3.

i=Kir2-il M R Uj-2+im
As we use the inequality |[(F ™) (s)] < K [s(1—s)]7%, by symmetry arguments it
can easily be shown that the upper bounds for 4, and A, are of the same order.
The same applies for 4, and A3, so that we can concentrate on finding orders
for [|4,]l; and ||4,]l,.
First we remark that, for each combination (k,, k,, k3) for which
1<ki<ky<hky<n,

P[(K,, K;, K3) = (kq, k3, k3)] = (2)” :

consequently,

n—k;

®

27) PI(Ky, Ky} = (ky, k)] = for 1<k <ky<n—1

and

i n—1 L L kot
PIKi=k]= ¥ "(Nf,—_z(ﬂ k:){;)( 1))
kz=ki+1 \3 2

for 1<k, €<n-2.

Since K; and Uy, ..., Uyt are independent, we have

E{4,)? = Ex, (Ewo,,...00e 100 U412 1 K4 1),

so that
£ ALl o\
M= Y PIK, = k| ¥, [-»-(Iu—u) [ a1
ki=1 j=2 i h UJ"&Z::& 2

Furthermore, Lemma 4 of Pap and van Zuijlen [5] states: for each fixed pair
&;, 8; € R there exists (under some conditions on the triple (g,, &5, j), which for
our purposes are always satisfied) a constant ¢ = c(g,, &;) such that

Ujm X . ) ‘
i w 1 B1 / ‘“N'“Z B3
11 eamgra, <ci(D) (1-52)"
Uj-aim n\B n
Therefore it follows easily that for j=2,...,n—1

Ujo1:n ‘ Vst B 1/ ] Jeg ]"1 _—
| | sdF @, <K] | s3>"'¢(1-s)*wsfi2seﬁ‘~(«-) (1-“——“_) .

Uje2in Uj-2in nAR n
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We obtain
2 ki1 i1 wr;ﬁ:‘fim 2
(28) 4413 < ZP[KI"*kl]( L(I—m)] | § SadF"'l(S}”z)
ky=1 j=2 n U zom
< "iz %(n—ka)(';;'(kx+l))( K]kfl ( )ﬂ*ﬁ*n( B %>'“““'1)2
k1=1

1872 k I&ﬁi j F—g—=ra }ﬁl —K—rz\2
K2 BAC B el EA et =
s ¢ nk;z--“-:;’l (1 ”) (’1 jg::z (”) ( n ) ‘

for constants ¢,, ¢,, depending on x. By integral approximation we see that

i ky+1 3~{w+ra) g ~={ic+r2)
o SET ()

B j=2

KHra=1
<C(I{x+r2<1}+l{x+r2—l}log +f{'¢+72>1}( iy )l
k 1

+I{?€+r2 =4} logn+I{x+r, > 4} nn+r;—¢>
for some ¢ = c(k+7r,). For k+r, <1 this leads to
17-2 k,
i< dK Y (1_%,_) <k
ki i n
for a certain ¢; = ¢ (k, 1), that is, [|4,]l» < ¢; K. For x+r, = 1 this leads to

2 21"*2 1 ki 2 B 2 22
ldillz< e K - > l1- log — <K

k=1
L , 1 1 «
[(1—s5)*log? (m—) ds = [ (tlogt)* dt < + 0.
0 1-s 0

for some c,, c3, depending on x and r,, since

Hence ||4,]l; € ¢3 K. For 1 <x+r; <4 we get

ln;:z k. 2 n 2{tra)=-2
2g 2- i
<, 3 (1-3) ()

In 2 k 4 2+ r2) j*lm ‘
=csK?~ 3 (x-ﬁ SesK? [ (L—g)tm 2t gy

ky=1 0

for certain cg4, cs (dependlng on k, r;), so that in this case, for some
ce = c (K, 73),

ills < e KU {1 <47z < S/21+1 {c+rs = 512} logn
+1{5/2 < x+ry < 4} netram3R),
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For k+r, > 4 we always have two terms producing two orders, of which we
need the largest. The (n/(n—k,))" " '-part in (29) will yield [|4, ]|, < cKn<*+72=572,
The other parts produce orders that are dominated by the order of the first
term. Hence, for some ¢ = ¢(r,, k) we find

(30)  Nldylls < cK(I {471y < 5/2}+1{k+r, = 5/2} /logn
+1 {FC“l—T;}‘ > 5/2} nxd-rz—ﬁlz)‘

To determine the order of ||4,]|, we roughly proceed similarly. We shall
stop noting that the constants depend on both x and #,, though of course they
do. Like before (see (27) as well as (28))

14213 < Z Z P(Ky, K3) = (ky, k3)]

Ey=1lka=ks+1

kz j j 1N\ Ujin 2
x( 5 [(m_)] I szu-s;dﬁ—lgs)uz)
i= ka1 L n | Uj*l:n
n—=2 a=-1 . ka i\ 2-(x+rz) e P It 2
EE T
i=1k=k+1 (3) LIS AN R

n—-2 a=1 k 1 k& 2—(x+ra) j— 1\ L letray 2
w5 3 0
n? ky=1ka=ks+1 nJ\B =+ \1 . n

As in (29) we have

1 § (_-_l) 2—'(:c+r~,g)( _j"‘])l ={K+rz)
Bimtr+1 \I R

cz(I {k+r; <2} +I{x+r, =2} lng

# Ktry=2
+I{u:+-r2>2}( k)
‘1

+I{x+ry = 3}logn+I{x+r, > 3} nxﬁ,g).

For k+r, < 2 this leads to

1722 =2t /& 1
ldali<esk:= ¥ % 1-2) g \041‘;'2——-% = c2K?,
B =1 ka=ky +1 n

so that {4l < ¢, K. For k+r; = 2 we find the same order. For 2 < k+r, < 3
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we get
1 n—1 ka—1 n 2+ 2ra~4
|45 cs K? = :
i <e s T F (1-2)(5)
n—1 k S5~=3g—2ra
=5 K2 i ¥ (kzml)(l—-e—i)
n? ka=2

< ¢ sz(l*s)s“z‘f“z"z ds < 3 K2,
O

as 5—2x—2r, > —1. Here also [|4,]|; < ¢; K.

For x+r; > 3 again we have two terms playing a part. As with 4,, here
the (n/(n—ky)y*">"'-term dominates the others. This leads us to
1422 < ﬂK,,/logn if k4+r;=23 and to ||45)l; < cKn*t"273 if k47, > 3.

Collecting the results we see that for some ¢ = c(k, ;) we have

42l < eK (I {47, < 3}+1{k+r, =3} /logn+I{k+ry > 3}nFtr=3),
Since the order of ||4,]|, dominates the ones of ||4,l,, [|4;]l; and [|44]],, it now

follows from (26) and (30) that Lemma 6 is correct. m

9. PROOCYF OF THEOREM 3

Theorem 3 is proved by using (2). We need to find upper bounds
for fi,(T), y5(T) and 43(T). First we set J: t=yr () [t(1—1)]77. As to f¥*(T)
we can apply Lemma 4. By taking p, := 0 and p, :=y in the expression for
d,, we obtain d; < 2% |}]|.,, so that Lemma 4 implies that for some ¢ = ¢(x, )

A*(T) < K2 |l

Next we determine the order of y3(7). By taking

we have for 1<j<n

Cin—Ci+in = € TE€p

eni= i (150) ] (v () +():

with

z=%ﬂQQ;&%JJT“E%O%%ﬂW-
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By Lemma 2 and (24), we obtain

-

n 1
—— > (Cin—Cis1, ) {F1;—T o+ a5}
n—1.2

j=

?%"3 (T)= (|32 Tialls =

3

n—1

2 :
i 5

< ) —) e {l1y—T 25+ 3}
k=1 IR 5= I3

]

which leaves us two terms to estimate from above.
First we take a look at the e;-term. As

N
leys] < 227 uwnmi[i(lmi%ﬁ for j=1,...n—1,
nin n

we obtain

n=1

e {Iyj— 2+
i

n
fjn—1

i= 3

{n=t ( 7 Fif. i—1\T
g 2% H‘o”’fl‘mg Z {IF 1l + 11 24ll3 + 1T 5413} {;(1"“;;”)]
j=1 ' ‘
1 a—1§ = 1 2f3—Kk~y
ScK|Wlle—s 3 [i(l “”J—):l

for some constant ¢ = c(x, y) (see (25)). Integral approximation yields

H a=1

= 3, e {l =5+ T3}

, < K |[]].o.-
=) K [

3

Regarding the second term we need to estimate je,| from above. To this end we
introduce the function

@: s [s(l+1/mn—g)]"" for se[i/n, 1].

We are mainly concerned with expressions of the form
WEEZ AN AL o .
}qﬂ( " ) fp(n)? for j=1,...,n—1.

@' ()= —y(1+1/n=28)[s(L+1/n—5]77""1,

the mean value theorem leads to

o 1=\
. 3y+1 STt - A T
el < 27y 3 (12 )] .

As

n
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In the same way as with e;;, for some ¢ = ¢(k, y) we obtain

n—1

— Z E‘jz{ru‘""pzj"l“r3j} < cK
i=1 3

n

Il o

We may conclude that for some ¢ = ¢(x, 7)
73 (T) < cK (1o + 1l )

Finally, we turn to 43(T), where ./A3(T) = [|n*2D, D, D, T|j, with
D;D,D,T as in Lemma 3. Now for j=2,...,n—1

Ciy ;_‘,,—26‘;,”4'(3_;_1.,; = j_'n +f;2 +f}3

if for all such j we set

o= () B () () o (SN -2)T
=) () ()

() AT -5
[520-20)

We proceed as with the y;(T), splitting ||n5%2 D, D, D; T|| up into three parts,
corresponding to fj, fj, and fj3, respectively. We start with fj;.
Applying the mean value theorem for two times we see that for all j

IR

Now we try to find an upper bound for the expression corresponding
to f;y. See (14) for the parts we abbreviated to “...". As in Section 8 we see that

ln? {... (fi) - Hla S B2 237 W Y o ™2 {1 4sll2 4. ..+ 1144l
with the 44, ..., 4, as before, taking r, =7. So for some ¢ =c(k, y)
n?* {. (i) iz < KWl

We turn to the second term, where we need to estimate f,; from above
for all j. To this we apply the same function ¢ that we used to estimate e;,.

il S 27+
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» ;i 1—7—1
fal < 23**%awumnﬂ’-[g(lw%)] :

and as with f;; we see that

In? {...(fi2). - Hll2 < K |Y)] -

As to the third term we need to estimate |f3;| from above (all j). To this end
again we use the function ¢, as we have to deal with expressions of the form

+1 1 )
RO
We apply the mean value theorem two times to see that
j+1 J j—1
()2l o)
Moreover,

") ={25(1+1/n—)+@+ D1+ 1/n-25}y[s(1+1/n—5]"%*2  for all s,

We obtain

n

2 1o’ —1 j+1
< 3le" @ for some gg[fn Jj+ }

80
lo” () < v +3)[s(1+1/n—35)] "0+,

Restricting ourselves to se[(j—1)/n, (j+1)/n] we obtain

lo” ()] < v(?+3)22w+za[ (1 1*1)]*@*-:;‘

1

Thus we see that for all j we have

. : —y—2
Uisl < 27*5 9 (r+3) [l n ™ ﬁ(l w’——l—)] :

n

Hence for some ¢ = c(x, y)

2 {o.. () - Hlz < K Wl

We conclude that for some ¢ = ¢(k, y)

VA(T) < K AW o+ 10 1o+ W] o)-

Now Theorem 3 is an easy consequence. m

4 - PAMS 212
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