
Abstract. A new tool for the identiSicritian of wgrmsian made1 is 
pro@ and its promes a r ~  &&%Ad Tlre Irey impomce of the new 
tool is  &at i t  is abk to solve still not very weU-known problem ofditremity 

es, as d d M  in V i W  [El a d  PSI. Main i d a  of the propasai 
is foI1uw. Having evdwted an a h &  d -%ion mficien& for 
i v a  data, the data are e t ioned inm two disjoint subets @.g, by a gm- 
met& rule applid in the factor space) Then far mch m b t  of cormpan- 
ding residuals we evduatc the & h a &  of ith& &&y, ~ g .  the kmeJ one. 
TE the estimate of regession madel is "near to the wrn madel", the 
de~sitg of disturbances is tbe same in the both subsis, and henm also 
the estimates aF density of residuals stre approximately q u a 3  each to 
orber. Therefore, FiaUy, "re estimates of density are compared 
by means of the vveightd Heillinp distance. It h p l i a  that the sig- 
scant dilf~renoe between the estimates uf dengity irrdicates that the 
given cstimate of tbe re~yession madel is not mar to the "true" model 
or, in other words, that it is nat "dequate'Yos tbc data. In the w a  
when wc have at aur disposal more eathates of the regression modd, 
and @paally whan the estimate are c~nuiderabty Werent (each &am 
other), LSlc test statistic may be also used far ~lwrjng the estimate of 
the regressioa mo&L 'FVe just accept the =timute wiih the smailest 
weighted Heanger diskanre. The result of t h ~  paper i s  illubtrated by 
twe stmple. numericrtl examples demoastratiag: wpcxidly the znsitivi- 
g OF the test statistic tu the JiEerwcc betwwn the amatas  of density. 

Key wards and pbrslses: weighted Weige1?:er distane~~ diam~sriss 
and choice of nrurtcl, dive*ty of (robust) esriwates. 

The sacoad half of the past wntrrry has broa&t into the statisties st lot of 
ne%v methods. Let w r e ~ d  e.g. ;an ample ofbir of robust methods. So, maiy 
statistical, especially dsdssi~al proMerns can be treated by scvewl methods. 

* Kmeelsch was support& by grant aF GA UK uumbr 25SJaOQDOIA EK/FSV. 



Somerinzes this offer of methods seems to be sso wide that it i s  diEcult to select, 
for given data, the best one. 

Let us Hook on the situa~on mare closely- However, prior to continuing, 
Jet us make two technicd remarks. 

First]& in. the paper the problem of selecting the "'best possible" estimate 
sf the rep~ssion rnadd for given data wiH be treated. Hence, let us restrick 
ourselves in. th$s intro8uctor;v text also oa repessirla malysis. 

Secondly, tca avoid a nzisunderstanding heredtes the word estimate will be 
used exchsivdy for the value OF the: estimator at given data. 

It is not difticult to learn that the canditions, under which the; estimator of 
a regression mod& is srsympto~cdy coasiste~t and e x o  normal, are rather 
weak I(e,g. the conditions for a wide class of of-estimatars may be found in 
Maonna and Yohai [13], JureEkovit [9] ar [I61 or far LTS-estimator see 
VEhk L24J etc.), One may also easily find that having adopted some optimaljty 
crriteriq W e  a-robustness or "dr-robustness, minimax bias etc., results proving 
the optimality of some dasses of estimators are w&lable (Hampel et al. c63, 
Martin et d. [I$], Vobai and Zamar [2717 etc.), Never&eless, even if we restrict 
ourselves to same such clame~, the range of me&ods which can be applied is 
stiU very wide. So, tbere is still a possibGty to choose, and hen% we may hope 
to be able to select the method not only according to some general principlm 
but also adaptivdy to tbe data (Hog8 PIf]). 

3t is easy to verify (by a 'bnumerical"" experiments) that one may sbtaiaa for 
a one set of data several esthates of the model, in which the vdues of regreg- 
sion coeEcients are eoaasiderably diEerent (ViHek [I 73 or [25]). The &Beream 
may amount to the hundreds of percents of the value of one estimate with 
respect to the other estimate of the same cot3nieient. All the estimates of the 
madel hhavixllg been, of course, evaluated for the same data, i.c, for the same 
fespanse tfarjiables and for the same set of reflessors they have been only 
prodnmd by diRercnr algorithms. Mortlover, dl or" these estimatm pass (typical- 
Iy without difi~ulties) some test as I"-tcst as for the robust methods acme 
s-test; see Maxkaeou et aal, C123. 

It may be sf intertat that the diversity of the estimates of the same r a ~ s -  
sian maid4 need not cauue nesessarily any problem what wnmms the eRcien- 
cy of @timatian bemuse the cficiency of the vadous estbators need not be 
considerably dil"ferent @iZek C19"J or [23]]. However, we may get in sefious 
djrtieulties when explaining or iaterpreting a slructurr: of data, and also tha 
quality (or reliability) of predicitian may be problematic. In Vikek [20] the 
example of data is presented far which the Least Median of Sqllawes (LMS) and 
the Idcast Trimmed Squares (LTSI) estimates 81% orthcrgoml each to otherF 
example of s ~ l a r  ef%ect for red data was presentd also ia ViBek l201. 

Of course8 one may argue that when p r o m s s i ~  real: data WP may meet 
with such a situation rarcly. 11 mag be or need not be true but it docs not help 
ia the situation whcn we process one, unique sample of data. Then any con- 
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siderations about, the frequency of meeting such strange data are helpless, So 
we reztXly stay in front of a s e d ~ u s  problem what to do when SFar the &liven dab 
we obtain several, very &fferenf estimates ssf models. 

An advice [impliici tly) given, e.g, in Rousseeuw and Leroy [ 1 53, Chapter 5, 
is to use a method with high breakdown point as a diagnostjc tool, aad then to 
select an M-eslimate which is near to this one with high breakdown point. 
Another proposed possibility is to use a one-step M-estimate starting; again 
from an estimate with high breakdown paint (I-lmpel et al, [GI, p. 330, Jrz- 
reEkovB and Portnoy El I]). As foXlows from the exalslplle (which was almady 
mentioned above) with LMS orthogonal to LTS [ViSek [2:20]3, these advices are 
not helping too much, (Far numerical examples of the diversity of one-step 
Matimates, LTS and LMS estimates see nlse Bseek aad VJ6ek [3], [219 or 
C~21.) 

Of course, we usudly sdect fiom the evaluated estimates af model accord- 
ing to same objec~ves or ideas commonly accepted in the branch af science 
the data came from. Sometimes however a statistieauy oriented tool may givc: 
a hint in a farm of rejectkg a hypothesis that the respective m d e l  has gene- 
rated data. 

In the present pap1 we proposr: a statistic which may be used to reject 
those estimates which arc: not "adquate" for given drrta, The stat is^^ iis based 
on the weighted Nellinger distmce between the wiimates of density sf residuals 
in two halves of sample, These two halves of data may be created e.g, by 
a ""natur;rl" geometric rule. The statistic carr be also used to sekct the estimate 
of the regessian model which fits to the data in the best way, From the all 
evaluated estimabs we just accept that one for w b a  the weighted Htidejilinger 
dktance reaches its migimum, 

IjFf US ,give now som basic notation. 

I ,  TEST S'FATETIa 

Let R be the: real line aod N tlhe set of dl positive integers. For %ray gt E N 
let R" den~lt ;~ the E-dirneasional Euclidean space, We shall consider for all d E N 
;a linear regression rnodd with dete 

(3.11 5 = x:.fl"+efr i = I t  23 * . S f  

where iis s resgome variable, XI = (xa , xi2 ,  . . . , x,)~ i s  the E-th row (assurnd 
as a ~a luma  vector) of the design matrix (if the intercept: is ami~nned, then we 
suppox xi, = 1 for i - 1, 2, ...), fiQ - ( f i y ,  B2,. .., p:)' is the vector ef regres- 
sion coeEcients (unkrnown but f i x ) ,  and {q),"S_, is a sequence of itldepndent 
md identically distributed radom variables .-- &stributd a m r d ~ l g  to a dis- 
tribution function E: The distributian fuaction is assumed to be absolutdy 
ean~nnsus; with a finite Supremum .of its density ;f; s;ly supza f Is) < V< m cxs. 



The xtlalrix form of mod~l  (1.1) is then 

k t  w be a kernel, w :  R + C O ,  m) and, for any ce[O,  oo), ~ E R ,  T* = 
(Kt;;, K , , ,  ..., a', X < 6 G k g 2n, and P~RPdtfirre the hrtlel estimator afthe 
density 

I 
j Z , k  CY, Y", B ,  4 = - C w(c- ' (Y - -  V;+XTfl)% 

Ik-Oci=, 

Assume that have at our disposal 2~a abservations and put 

and 
~ ( " 1  = (~~bzjy~ ~ y o ~ q 3 ~ +  

Similarly for the corresponding desiw matrices Xi"*') md Xc"*2" We shall 
consider for some sequenw (c,,),"=, b 0 of the real numbers the kernd es- 
timators 

In wkit follows let us write bxiefly I: Ye$ and fCzP instead of Yb), Y(n.f)  and 
Yb*'Z", resmively; sEmjllxiy far the design matfix X and its padfrian, Through- 
out the paper the sequeace {c,),S"=$ will be fix, and hence we s b d  ilbbreviate 
the notation of the kemd estimato~ as A ( y ,  YU1", P) imtead of fd l  

IY, YtEt*l)L St c J ~  (yI P2), PI instead of A+ (Y, YfR*2)r ell), etc. Find- 
ly, for s, sequenw of posihve numkrs (a,):= =l F r and /.I E RP define the statis- 
tics of the Hellingr type 

- a ,  

E~~idently, BF8(k", f l  is not prt;eisely the Wdlinger distance of respective estima- 
tars oE density. We have included into the fornula which determines I l n ( T :  j?] 
a "weight hnctian" in the form af f2,(y, YF Y,). We haw done i t  no be abEc to 
cope with some teshicarlities. On the oth~r hmd, a heuristic j~qtificatian of 
suck a step i s  however rather straightforward. As t;he krneI estimates are "the 
most unreliable" ~ a i t  their tails;. 1P is hence naessaay to take the inEorrnation 
about the density at the tails with a caution or, in other words, the informlatian 
at the tails of the estimators; is to he somewhat wweighfd down, 

The test which wilt be: pmpssed bdrsw will be based on the EoUawing: 

T m m ~  1. Let the fillowing conditions ha JuFJiEled: 
(i) The derasity f h a  aflnite suprcmurn and the 6~anded  SECOI~CI  r ler ivdh~.  



(ii) The seqzaences (a,]?= ,, {cn)?=, and (d,,)&, are such that 
(4 (--an7 a,) ~ = l .  ( Y E R :  f (,vl> d,),  

(b) c,, = u(1), cZ,c, = 0(1) as n-+ a, 
[I;) there exists rz(Q, 1) so that 

(dj n"%i4a; = a(1) and n - % i 3 a , d i 1  = o(1) &s n 4 oa. 
(iii) f i r  the kerael w(l-) we have 

and there exists (L,)?= =, such that, f t r  Z. QS in (iI) (G), 

c,-V2 j w 2 ( t ) d t = o ( 3 )  l a s ~ z - + c a  and 1itnsupc,L,~; '<~ 
14 =-Lm ,+ m 

Then the asymptotic distributioa of 

is N ( 0 ,  11, where 

For the proof of Theorern 1. we shall prepare several assertions. However, 
prior to doing that let us discuss the assumptions of the theorem. because it 
med not be clear immediately whether they can be farjfilled, 

R ern ark 1. Firstly, to construct the sequences (.en)?! and 
Id,),", , ia order to met assumptisn [ii) of "Theorem I we need t0 start from 
(dm),"-, . Then we may find (a,):= (under some mild and acceptable assump- 
tion on the shape afJ; erg, that {y: ICY) > d,) i s  an internal) to fulfill (ii) (a). Now 
we ta find (c,) ,",~ sa that- n. - ' c i 4  na -; o(1). If it i s  not possible, we have 
to change (aN]% to s ~ m e  (GBl);p= 10 that (ii) (a) i s  fulfill&, &#l d a, and there i s  
{c,),"rl sa tbai n- be,4 lii = ,(I). May be that we obtain a sequenm (a",,):=, 
such lhai (--a,, 5,) r { y  c R: f {y) > 0)  rather slawlg. Nevertheless, we may 
always %elect: 5, b 0 10 6h;tt En f7, cC, and (6) (b) ar~d (ii] [e) arc also fulfilled. If now 
the secnnd sequi~ment in (ii) /d) does not kdd, we have to take some {ti:),"= 



so thar d," > 4 for all n E N to meet (ii) (dl (aad naturally to keep d: L O), This 
is a-lsa dways possible. Now we have to return to [ii)(a) and may be 'that we 
will have to change the sequence (ii,)?=, to (a:)%, so that a: < an to fukf"sll 
(ii)(a). Similarly, it may happen that we will be fareed to change {En);= =, sa thar 
c: > s", for aPI n E N and thzt [ii) (b) and (ii) (c) will be fulfilled (thjs is, possible SCgr 
any a: increasing to the upper hound of ofthe sumort off (y)), But then 
(ii) (d) keeps: to hold dso for , {c:):= and (dz),"", ,, Now, we may select 
the kernel w [with sufidentlp modest tails) sa that the assumpt-ion (iii) i s  Md- 
led. This means: that the assumptions of Theorem I. are not surely ~ontradic- 
tory and, moreover, for the most of densit+es they can be easily fulfilled. 

Secondly, it may seem that the second part of (ii)(b) together with the first 
part of [is [d) imgGcs the second part of (iij (dl. Of course; this d q n d s  sn  the fact. 
how the smnd part of the assumpzion (ii)(b) is undewtood. If WE msume that i t  
mans that there is 12, E N  and k > 0, K e 60 se that for aW n r no we have 
k < d,cL1 < K, then really the swand part of fii)(d) is rdundant. If, however, 
we assume that f s r  aU n > ra, we have only d,c,-k K#, then it may happen that 
d ,  e; \ a 4 m, and then eveo under n - c;" a: - a 01) we can haye 
n-I ~ ; ~ a , d ; ~  P ca as n -, a. Mter all, the msswmptiuns, except of the =cond 
part of (ii) ($1, "allow" id," tts converge to zero rather fast and it would eituse that 
the seeand part of (ii)[d) can Ix: violated, m 

For the proof of the following assertion see Csbrg6 and Rkvksz [YJ, Eem- 
ma 6,1.2. 

d s m ~ r a ~  1 (Cstirgii and RBvksz). Let the kkerlael w( t )  be bownded witkt 

M o r ~ o w ~ r ,  ~ S S U B ~ C  that fhe d e ~ s i t y  .(I$) has a buuprded second deri~rrlit~g QR an 
intervnS --a g A < B g  C;O. Thenfar alty G > B  

LEMMA 1. Let the assumptions qf Theorem 1 be $zf&Jlt.d. Then 

Pr rr a L Making use sf the Schwas: inequdiq we find an u-ppar bound of 
the sqnamd stdue 0x1 the lefb-hand side in the form 
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Now we easily verify that 

Consequently, the first factor of (2.1) nlay be written as 

We shall use now the inquaPity (a - b)" 6 612 (a2 - b2I2 valid for a 3 0 and 
h > 0. We obtain again an upper bound for both tbc terms in (2.3) in the: farm 

whem L E R  is arbitrary. Further @lease, kccp in mind that w(t) 3 0) 



Corzsequently, taking into account (2S) and (2-8) we comludc that (2.41 is 
propadional to L; I, and hence the first factor of 12.1) has order QP [ c i J  a,). iaua 
ta the iadepndeace of cis, far the second factor d (2A) we have (agdn LE R, 
arbi trwy) 

8nce -I: was arbitrary, we have the second factor of (2.1) of order 8, (n- c;; "J. 
N ~ F v ,  taking into accoant, that we have considered the squard left-had side of 
the expression given in the assefion of the b m a  we complete the proof. aa! 

2. Let the nssr8my;rtiom of Theorem 1 be .fu&ided, Then for wIb corn- 
binatims s$ i, j = l , 2  we have 

-apt - @,(n-l""c;;Za,). 

P r o o f. As in the proof d L e m a  1 we obta4n a boundary for the squmd 
left-hand side in the form 

(keep in mind (2.2)). The rest of the proof uses the steps which were performed 
in the proof of the previous Icmma. 

IBMMA 3, Let thu ~sssumptions of Tlzeorm I Isefa@fiIkd, ?'hen for i = 1, 2 
we obtain 

(2.7) n 7 LfLD(y, r", j5)-E"2Ab, YtO. BPf14dy = 0,(n-1~2c~3u,&1). 
- en 

Pro of, We shall use again the inequality (a -- b)' G h - Z  a 2 O-), 
b > 0- We infer sben that the left-hand side of (27) is bauaded by 
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Now, using Asser~on 1 and the assumption (iii)(b) we may fmd no E N so that 
for all rt 2 no we: have 

sup IEX(Y, r''""" ~p")-J*bCY)I 

and hence 

6 Zd;' 7 E - ' L ( ~ ,  Yti3, po)@,QCy, Pi), P ? - E / . ~ .  Y"). / 3 ' ) ~ ~ d ~ -  
-a, 

Now 

EU",@, E " I ~ " , p O ) - ~ ~ f y ,  Ytij, /37]" - c;4(a-%Ew-Ew~4+n-%2 EM,-EwjZj. 

Making use of the hequalities 

E Z [ w - E d '  6 4[Bwa+EZw9s~pzw[y) g 8cP(sup3 w ( y ) ) E A j y p  Yrlijr Po) 
YER- T€E 

and (ii)[a) of Theorem 1, we find (as in (2.4)) that 

(28) 2 7  E - ' ~ . ( ~ , Y " ) , B ~ ) E ~ c ~ ,  ~ ~ ~ , f l ' ) - E f . ( y ,  Yti3,floH'dy 
-am 

6 128vsm2 a, c i 3  sup3 w @), 
WB 

Wow let the set gNi be determined as 

far ab positive eonstant K .  Taking, into account (2.81, we have 

a d  the proof is complete. M 



Pro o t  Let LE R be arbitrary, Using orace again the inquality 
( ~ - b ) ~  -= b-'(a2-h2) (a 2 O and 6 r O), we obtain 

Since L was arbitrary, the proof is complete. as 

The proof of the next Xema will be based on Theorem $,I.% of Csarg8 
and Rbwhsz C5J. For contrellience sf the reader we will give this theorem here as 
an msercion without proof, 

~SI. ,X.TIUM 2 (CsBrgb and JRBvB;SZ), Ler G,(x) (- oo d A .r x < B 6 a; 
ua = 1 ,2 ,  . , .) be la sequence ~f Sntassian processes with 

land 
B B B 

~ J ~ g f h ; ) d x  = ~ E G , ~ ( x ) ~ x =  JR,(x, X ~ J X  =m, K +a. 
A A A 

Assu~nt. that R, (tf , v )  ((u, U )  E ( A ,  BIZ) is eontin'~lotss at any paint (tl, u) 
(A  < brf < B), Sqlldrg integrable, 

B B B 
ol~=b:V;1~jG~[x)dx=2fJR~(er ,u)dtsdv+w (n- tm) ,  

A Y A 

iaild 



for any Ft E L2 ( A ,  Bj. bShe~ 
B 

d;'(jGi(x)dx-m,). SN(10, If .  
A 

5. Let the msumptiums of Theorem 1 be sacisjed mnlb pus 

Pr oaf. First af all, let us recall that for the q u e n w  of independent and 
ideatidly distributed randam variables {ei)g"=,the empirical distribution Eunc- 
tian is detemined as 

% n 

We shall write briefly Fn(x). Denote by Ff"(x the conespandjing empirical 
distribution function of XCEk-XT j0 (i =: d l  2, . - ., un h r  j = 1; respectivejy, 
i = nl-1, n C 2 ,  .,,, 28 fox j=2) .  Put (fnr IE [O ,  I]) 

sf' ( r )  5 & [Fy (in v F (I)) - t ]  

and define pt,[yB eJ = e;'b~(c;~Q-z)). %en we have 

(see also Crsiirg6 artd RdvC?sz [59, p, 223). Let us denote by 6,4yf the process 
&{jf(v, 'Y"'', pa)-fjb, Yt2ji Po)],  -m < y m. Then we have B,G.(y) - 0 
and 



+ E [Biz' (c) B ~ I  (z)]) dr cp, (u, inv F (t)) dZ pfi (vr inv I; (2)) 

= 1 (iF:Bi3> ft)BL1 "z) -+ EBi2) ((t) Biz) (I)) dt rp, (u, inv F It)) d, q, (a, inv F (z)) 
0 0 

(set agairu CsiirgG and Rkvhsz [5j, p, 2271, Now kt us rmall that Gii, and 2; me 
given by 

(see the previous assertion). We obtain 

To be able to use Assertion 2 we me$ ta verify that R,(a3 vv) i s  continuous at 
every point (t ,  E), t E R  (which is hawever evident due to continuity of kernel w ] ~  
and also that the mndit-ioe (2.9) holds, Wer h%v,ve for any h ( t ) ~ L ,  



This rtspresents the nxlznerator of the ratio in (2-9). The denominator k equal to 
*d": and (e~rideraUy, sm (2.113) Ifonverges to I ~ n i t y ,  So the whale ratio con- 
verges to z r o  as n, -+ os, which means that the con&tion ( 2 3  is fulfilled. Hence 
using the Assertion 2 we iafer that the statistic 

eonverges in distribution to N (0, 1). 3'0 csrnplete the proof it remains to show 
that 

In order to do this, let us write the left-hand side as 

Now for any 6 > 0 

whwe XI" 8 [:,.I.@) d y  J:, {Jz, w (t)  MI (D + t )  d t )  do. Consequently, the 
upper baand h r  tl1e studied probabfflg may be written in the form 



The first term may be (starting \yith same  EN) bounded by 
m 

~ 6 - ' e ; ~ ' 7  w2(t)dr f ( y ) d y = o ( l )  as n - m ,  
- t m  I1 -tM~ln 

and the second one by 
CCI 

[ {wZ ( t j  j f ( ~ - t ~ ~ d ~ ) d t  
itlr~, - m  

= = , X S - ' C ; ~ F ~  5 w l ( ~ ) d t = ~ ( l )  as n 4 m .  
Erlz L, 

That completes the: proof. B 

Proof of Theorem 1. Due to h m m a  1 we have 

Using the equality 

x ~ - l / " & b ,  F",, 13) 

and taking into account (2.2) we obtajn 

Now ushg Lemmas 2-4 we obtain 

and the theorem follows from Lamma. 5. le4 

IT em a r k  2, It follotvs from (2,133 a d  [Z.I2) that the statistics $fn ( Y ~  V,'] 
and &,{Y, pa) are asymptoticdIIy equivalent, znd Ihmm we could use for the 
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purpose which was discussed in the Introduction the statistic $n (Y,  Po) instead 
of Xn(V; B0). The reason why we have wasicle~d at first ZfCI,(Y, jiQ) was the 
fact $hat the HeIJinpr distance Is a well-known seatistic w ~ c h  w a  proved to 
be oseful and srgplicabb, and hence many siatis~cians became Familiar with it. 
On the other hand, it is evident that it is mueh easier to treat gn (Y, Po) thara 
*# ( K Po). 

Ta be able to construct a ~13ica.l regon. for a lest based on $N('Y, $1 one 
needs icl estimate jzoli j2 (1.) dr. 

To do this we s b d  use the fouowing assertion. Since the assumptions are 
somewhat different from the assumptions of Theorem 1, we will give them 
precisely fallowing Csdgij d Rbvksz [SJ. Far the proof see Theorern 6.1.5 

ABERTION 3. k t  f uanish autsde afinite interval (C, f3$ and assumg that it 
hQs a boundd second derivative an this interual. Mor~ouer, let rhe kernel w ucanislz 
also OMF of a jn i t e  interval ( A ,  jS) with A g C < D d B and w (t) G M 
together with tw ( t)  dt = 0. Let us put 

Then 

i~ dis&ibution, pravaed that n- %c,w/2 log2 n -- o (1) and rac{/2 = oQ).  

Remark 3. Vlse farnxutatd Assertion 3 in the: form as gi~en in CfiIirgiil 
adn$ ]R~v&sz [FJ. &IS. demonstrat& in Theom 1 we may &void the as~umption of 
the bounded support of thc density f by a more eomplicalcd setup with in- 
mea~rag intervds (- a,, 19,). -I-n bath approaches, i.e, in tlzc appma~acb assuming 
;the compact suppert of density as well as in the approach with a squeacre: of 
intervds (the length of which inercases to infinity), we have te  eope with the 
behaviour of the density and ib estimator iu the tail areas, The setup given in 
Theorem 1 is (a little) more general3 howe~evar wa have to pay for it by the 
smaller tramparency of proofs and by a lot of techni~dties in them. IB spite af 
this badvanbge :ewe have wed it, just to show that the boundd suppart af 
knsity is not ~n inevilablc assumption, and so that in Gs6g6 and Rkvksz 153 
the approlhch wirh compact support was used ody to simpilify the text. Of 
csusse, it also took inlo amolmt the f a d  that when we apply s w h  theoretical 
remits far Finite-size samples (especially far modest or small sizes) it is ques- 
tianable t~ insist that data were ""gnerated'" by a distribution haGag the 
dmsity with the lanboundd support or not, That is why wt: will further use the 
setup wh.ich was preferred by CsdrgiS and Wkvksz. ps 



Tmo~eu 2. Let us assume thur f has a bounded seead derivative and 
w t ~ i s h ~ ~  outside a jirzite interaal (C, Dl. Let also the kernel w vanish outside 
a firzite interval (A ,  B), A ,< G $ 0  G D & B, aizd var,,,~, w (r-) =G M t0gerhe.l. 
with 3': tw  (t) dt = O, Leb 26s pat 

has fIze nsynzptotic distribution N[O,  11, where 

and where m, is the same m ira Tkeomna 1, is.  

P ra o f. The theorem follows from kernma 5 and Asseftion 3 (do not be 
confused that integration is taken cllxldy aver the internal (A ,  B) a l ~ o u g h  
JS'n (P", Y, &') does not neee~sady vanish outside this interval ; however, tbr: ia- 
tegral over the complement to (A ,  B) i s  not asymptoriczilly sipificat~t, see 
Assertion 3). 

To bring the considerations which stgrted b the Introduction to the end 
which wodd be applicable, we: need ta find a statistis which would deperrd only 
on the data and not on the unknown value Po. This will be done in the next 
theorem. 

c r ~ m m ~  3. Let the nsstk~nptjio~s qf Theorem 2 be jtslflted. Moraoutz-16, r'er: 

6 be on Jn-consistent estimtor of pn and ler w' (I), w" (z) adj 'b)  exist every- 
where. F~rrttael; EEI 

m 

(2.13) j- ltwr d t  < oa, sup]Mll(t)l ..-" 03, sup {vwlr(t]l < Oo 
-CO &R reg 

and sup 16' < cam 
poR 



Then 

8,1y, 2: = .=E (K BO) 4- 0, h)* 
P r a a f. Not ta burden the paper (which is already full af technicalities) by 

a lot of steps which are: similar la those from the previous text, we shaJ1. only 
indicate the idea of the proof. Let uus write 

and consider at first 

where 

To make an idea about the errpregsion in (2.16), let us study 

E x  an a r 0. Since 6 is 6-mnaistent (i.e. @- P O )  = D1(l)). there is 
a finite consbnt K sueh that with probabiliity at last  1 -- c we haye y - ef - n - K t  
ZZ Q~ < y - sf+ us-""aK1, Now the expression in (2.17) can be rewritten as 



ti~(min { y  --el, v i I . 9  max {y-ec* f l i ) )  

and 

Since W ( Z )  2 01, the expression in (2.18) is bouztded by 

The assumption fiat sup,, [w"[z)/ .: m together with (2.19) yield 

 therefor^ we have to cope with the expression 

Naw we shall use the fact that the eerrprwsion. 

Sol we need to study 
gI on 

I w . ( c ~ ' ( y - ~ ) ) f ( s ) d z  and 5 [wt(c;'(y--a))]' /b)dr.  

Using the transformation c, (y - 8)  = td we arrive at 



far an appropriate /lc,l z e,lu]. But then by (2.13) we obtain 
98 m 

(2.21) 1 w' (a ) f ( y )du=O and C: j' wP(u) f - l (~ , )ur ln - -@(c: ) .  
-m -52 

Mong sid1a-r Jines we find that 

Thrafsre, putting t i  = c; "jlXI[l (w"(c, @ - ei)) -Ewe (c i l  (y -ei))) aacl apply- 
ing the strong Paw of large numbers (see e.8. Breiman [4]? Theorem 3,241, we 
obtain 

Approximating the expressions 

respcxively, and taking inlo accarmnt (2.14), (2-1 5 )  and (2,21), we End tihat (2.17) 
is n, (13,). By aimil~hr ~lansideratians we obtain the same reul t  for (2,161, A chain 
of arralogious steps then e;ompIetes the proof r5f the theorem. 

Remark 4. The assumption that the support of P is finite represents 
mtuady some (t_l.imre~.cd) mstiction of generdity, As. mntiland in R~nark 2, 
due fa the fa~t that in agplic;atisrts we always have a fmite number of obser- 
vations, ir may occur that it does nat restrict applisabbklity af the result. Haw- 
ever, much more imporlaat far the practical pzzrpmcs is the polelem that is 
common ,to d1 the asymptotic results: "Hoar will the asymptotics realiy 
work?" a 

n e  answer to thir; qu~stion needs a r6asaaabfy hrge study* pr~ferabjy on: 
red data sets, taking k i a  amount some suM*Z~ieatly rich family of met bod^ COP 
estimaGng the regression model, merefore such a study Bas to ?or: postpan& to 
a spciak paper, 



Neve~heIess, ta create at least a very first idmi abut a ' t ~~ i t i v i l j r ' '  of ')S, [J') 
wit11 respect to ch:hnnges of /3 (or, more pre~isely, about aa ""ab3ity7"~ disting~~sh 
diE~rent Ps'j we give the follawing artificial Example 1, (Next Exmple 2 offers then 
a w r y  first itlsighlt on the hehaviour of statistic 8, ( X  an the reai data.) 

EXAMPLE I. W e  have considered the linear madel 

and we have generated data which are given in Table 1. The values of regres- 
sors (xi,, .xi,) far the First half of data (i.e. for i = 1, 2 ,  . . ., 40) were generated so 
to be uniformly distsibuted in tbe triangle [- 1 , - 13, [- 1 ,  13, [I, I], while far 
the second half (i.e. far i -: 41, 42, . . . , 80) in the triangle [- I ,  - 11, [I  , - I], 
[ I ,  11, Such a division .of data seems to be quite realistic, since in real ap- 
plications (see Exannplr: 2) we will divide data mostly according to the position 
in the faetrrr space. 

Values of r , ,  e,, . . ., e,, were generated by appl$ng n polynomid appsax- 
irnation to the normal qmntile function (see Abrarnowitz and Stegun [I]) on 
the miformly distributed numbers and the resuljilthg numbers were tested far 
normality (see Shapiro and Wi& 1161). Then we have assumed the trve mollel 
(3.1) ~vith = 0 a d  /I, = 0, This means t h ~ t  = ei, i.e. e , ,  e , ,  . . ,, egg coin- 
cide with values af I-esponse variables. 

The firs half of data The s ~ o n d  half of dkta 



Tab  lc 1. Simulated data (continued) 

Now, let LPS explain TaMe 2, Take into arccount that for our ease, i.e, 
wfrcn f l ,  = O and 8, -- 0, the value N,(Y, j] in the first row re-presmts the 
value nT ;B weighted Hellinger dislancc: af residuals in, the ""true" madd and 
ihe valprcs d stalistim HBU (11, /3) and pXg, (Y; fl) hint that the bath halves 
of data are rwly ~ e r y  ~imilw. In the other rows of Table 2 the values of 
a, ( Y, a d  dia (Y, 8) are given for 41 vduw of fl  qujdistaatly spread (as 
the vector) aver one half of the unit circle (i.e. we m4y interpret the values 
e.g, in the second row of the kft-hand half of Table 2 as fakluws: An esti- 
matar has given the eglitxaate fll = Q, Pz = 1, and using corresponding re- 
siduals 

we have eevaduated M,,(Y, $J. Sillw 5 pcresnr quantile of the standard normal 
distribution is 1.645, onr test 1.cjecas the hypothesis thal b1 = 0, p2 .= f may be: 
a trae madel. 



Table 2. Sensitivity of statistics 

Notim that nearby the mast sensitive direction representd by j3 - (0, 1) 
(and it would be similady for /3 - (0, -1)) we have rather a wide range (up 
to /3 = (0.38, 0.92) an one side and similarly up to 8 = (-0.45, Q.89) on the 
opposite side) in which the test rejests (on the 5 percent level) the bylpeehks 
elhat j3 is the true value (i.e. that swb an estimate d the model is acceptaltala]l, 
k. stnail1 asymmetry in behaviour af fhc: ~bt;stEtic~ (in the left a d  t k  right hildf 
of Table 2) !)is caused by the fact that the randomly generated repwsors for 
the first 40 observations have Bilen aeddently into the regon given by p in t s  
[ - I ,  C- I ,  id [ r ,  11, [a, 01 rather than into the uimgle [-I, --I], 
[I, - I], [I , 43. A similar sittluiorr ocemred far the secofl8. half of absemz- 
tious. 

By this exam@@ it is dear that the method is sensifive with respect to 
division of points in #be sample [ste~arding to position in the factor S~LC-R).  

Therefare, ta be able to verify whether ithe obtEtined estitnate of the mode1 i s  
such that i t  geaerat~s in two (reasonably sdected) I~afves of the sample d p  

proximately- the sayb1e estintlate a? d~mity of residuais we may need (for the 
more-rlSlmensioaei fator spa=) more (arthoganal) divisions, E3[owevoa, it was 
clear from the very bgnniag that the statistie Xn (K IGZI depend an division 
of the sample, N C T ~ T ~  ab thed  recults give a hope that ,gC(Yj f l  may 
work quite wdl. 



EXAMPLE 2. For the second example we have used well-known "Star 
data" and gave them here only in the form of a figure. 

5 4 
Log surfa~e temperabre 

Fig. 1. Hertzprung-RusseII diagram 

The data describe the dependence of the light Intensity of stam on their 
surface temperature, they may be found in Rousseeuw and Leroy [I51 md 
were firstly published in MumErfircys PSI. Since we skall c~nstruet  the simple 
regression, we may easily verify whether a given estimate is reasonable, 

We have applied cn the datz the Least Squares, then the Least Median af 
Squares (LMS) [see Rnussceuw grid Leroy [15]j, and finally t w i ~ e  again the 
Least Squares on restriaed samples which were obtained deleting from the fuU 
data 4 (respiectivcltjr, 6) points which had in the LMS estimate the largest 
residuals. (The LMS estimate has been evaluated by the saA\vare uf Pavel 
B o b k  (see RoEck and Lachvut @I, see also discussion on the algorithms used 
far LMS in Viiek C223 or [ 25 ] ) ;  are ~ a l e f u l  far the possibility to use it,) The 
estimated models are Ibfi-iefiy reported in Table 3, where f i  is an estimate for 
inlerept, [! is an estimate of the slope coefficient !?xi- the explaining variable 
" t e m p ~ r ~ t u r e ~ ,  c ja  i~ an estimate of the sede, end fEnalIy R2 stays h a  the 
coeficient d det~smiaation. 

Then the data were divided Into two hajves (both containing the same 
nurnber'of abscrvatioas) by a line which was orthogcrraalt t a  the esiiimated 
regression Cne, and carrespolzding viilue~ OE the statistics H ,  and JP, for these 
rnodds were gathered in Table 4, 



Table 3. Results g.C ~&grsmian andysis (LS - the Lwst Squares, 
LMS - the T x ~ t  Mcdian of Squares, U-4 - the hast Squares with 
4 paints deleted, U d  - $he hast Syuarcs with ti paiu~s deleted] 

T a b l c  4. Values of testing stahissics 
(the abbreviations are the same as above) 

Although i t  is elear from Table 4 that the: test will not reject the hypothesis 
that hnsities of xsidaals in the two subsets of data are the same for LS- 
-estimte and LMS-es~mate, the improvement: of the model estimate when 
jetting 6 points is; evident. On the other bmd, it is out of question that the 
test i s  (also) somewhat conservative one. 

The previous two examples have demamtrate$ that the proposed statistic 
of the HeUhger type may help to sebct from all thc evaluated estimates nf the 
regression model such a model which fits best to the given data. The asynp- 
totic noranahty of the test statktic aUows then to canrjtruct also a critical 
region. 

lane may object that, the critiwi region of the t s t  is. bas& aarn thc asymq- 
totic result which may (sometimes) start to work ady for a Iarge numb~r uf 
obiervations, Maybe that sometPling ljke smU-sampb aslymplotics for cmpiri- 
cal pmeessa muld hdp, however m applicable theory is ea t  still available. 

As we have seen, the division of data into two ( ; c o m p X ~ m e y  s~hscts is 
{LheoretricdEy) arbitrary. Somebody may coasirler it as a drawback, sum~bsrdy 
as aa advantage (to tallor the methad to the topalom sf data). On the ather 
hand, the division which vvras used in Example 2 seems to be qaite natard. In 
the c a e  of p 2 we have to generdia the method sf dvision as fo"ol2ows. AX 
first, we project the data orthogonally into the estimated regression plane md 
determine she I a g ~ s t  axis d the ellipsoid which is generated by the Illvers8 
matrix lo the sample cowaariza~e matrix of these projected data, Secondly, we 
take fmrn all the planes orthogonal to this axis sfnch one which divides the data 
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into two halves with the same numbers of points. In the case where same paints. 
are in the dividing pianc we should add thein randomly to one of [he '%datesm', 

The requirement that the (estimat-es a4  density af residuals should be 
(very) shilar in (reasonably selected) subsets of residuzrls is probably cluile 
natural and transparent. The Idea resembles, by its simplicity, e.g. the idea on 
which the nor~nal plot is based. This i s  the stxong point of the approach and it 
seems to be more than suflieient repay for the mentioned disadvantages. Of 
course, one can argue agczinst, as well as ffar, the present ehoice of the density 
estimator and of the distance (is, against or far the kernd estimator and the 
weighted Hellinger distance). They were ~Iiosen to &mnons.trate that at Ieast in 
a simple case the approach is tractable. 

Naturally, t;l*lere may appear a question why we did not look direcdy for 
the estimator &fined as an arwment minimizing the proposed test statistic 
H,,;tK p). It is true that we may study estimators based on the kernel estimators 
directly (ViSek [18]), Ikotvever, the theory xcotnpanying szl~1-i estimators seems 
to be inevitably overcrowded by technicdities, and precise evduation sf the 
estimators of this type is n e d y  impossible. neref0l.e the efieiency of such 
a re~eallcb is qlmes;lianable. On the other hand, the cvdua~on  of &(Y, 8) and 
XI ( f :  for several regression mode1 estimates which we have at hand may be 
quite simple and quick (esge4aEly when we use some standard method of nu- 
merical inkgratian - in the present paper the Rornkrg method was applied). 
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