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Abstract. A pew tool for the identification of regression model is
proposed and its properties are established. The key importance of the new
tool is that it is able to solve still not very well-known problem of diversity
of estimates, as described in Visek [22] and [25]. Main idea of the proposal
is as follows. Having evaluated an estimate of regression coefficients for
given data, the data are partitioned into two digjoint subsets (e.g. by a geo-
metric rule applied in the factor space). Then for each subset of correspon-
ding residuals we evaluate the estimate of their density, e.g. the kernel one.
If the estimate of regression model is “near to the true model”, the
density of disturbances is the same in the both subsets, and hence also
the estimates of density of residuals are approximately equal each to
other. Therefore, finally, the estimates of density are compared
by means of the weighted Hellinger distance. It implies that the sig-
nificant difference between the estimates of density indicates that the
given estimate of the regression model is not near to the “true” model
or, in other words, that it is not “adequate” for the data. In the case
when we have at our disposal more estimates of the regression model,
and especially when the estimates are considerably different {each from
other), the test statistic may be also used for selecting the estimate of .
the regression model. We just accept the estimate with the smallest
weighted Hellinger distance. The result of the paper is illustrated by
two simple numerical examples demonstrating especially the sensitivi-
ty of the test statistic to the difference between the estimates of density.
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INTRODUCTION

The second half of the past century has brought into the statistics a lot of
new methods. Let us recall e.g. an ample offer of robust methods. So, many
statistical, especially classical problems can be treated by several methods.
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Sometimes this offer of methods seems to be so wide that it is difficult to select,
for given data, the best one.

Let us look on the situation more closely. However, prior to continuing,
let us make two technical remarks.

Firstly, in the paper the problem of selecting the “best possible” estimate
of the regression model for given data will be treated. Hence, let us restrict
ourselves in this introductory text also on regression analysis.

Secondly, to avoid a misunderstanding hereafter the word estimate will be
used exclusively for the value of the estimator at given data.

It is not difficult to learn that the conditions, under which the estimator of
a regression model is asymptotically consistent and even normal, are rather
weak (e.g. the conditions for a wide class of M-estimators may be found in
Maronna and Yohai [13], Juretkova [9] or [10] or for LTS-estimator see
Visek [24], etc.). One may also easily find that having adopted some optimality
criteria, like #-robustness or ¥ -robustness, minimax bias etc., results proving
the optimality of some classes of estimators are available (Hampel et al. [6],
Martin et al. [14], Yohai and Zamar [27], etc.). Nevertheless, even if we restrict
ourselves to some such classes, the range of methods which can be applied is
still very wide. So, there is still a possibility to choose, and hence we may hope
to be able to select the method not only according to some general principles
but also adaptively to the data (Hogg [7]).

1t is easy to verify (by a “numerical” experiments) that one may obtain for
a one set of data several estimates of the model, in which the values of regres-
sion coefficients are considerably different (Visek [17] or [25]). The difference
may amount to the hundreds of percents of the value of one estimate with
respect to the other estimate of the same coefficient. All the estimates of the
model having been, of course, evaluated for the same data, i.e. for the same
response variables and for the same set of regressors they have been only
produced by different algorithms. Moreover, all of these estimates pass (typical-
ly without difficulties) some test as F-test or for the robust methods some
t-test; see Markatou et al. [12].

It may be of interest that the diversity of the estimates of the same regres-
sion model need not cause necessarily any problem what concerns the efficien-
cy of estimation because the efficiency of the various estimators need not be
considerably different (Vifek [19] or [23]). However, we may get in serious

quality (or reliability) of prediction may be problematic. In Visek [20] the
example of data is presented for which the Least Median of Squares (LMS) and
the Least Trimmed Squares (LTS) estimates are orthogonal each to other. An
example of similar effect for real data was presented also in Visek [20].
Of course, one may argue that when processing real data we may meet
with such a situation rarely. It may be or need not be true but it does not help
in the situation when we process one, unique sample of data. Then any con-




Selecting regression model 469

siderations about the frequency of meeting such strange data are helpless. So
we really stay in front of a serious problem what to do when for the given data
we obtain several, very different estimates of models.

An advice (implicitly) given, e.g. in Rousseeuw and Leroy [15], Chapter 6,
is to use a method with high breakdown point as a diagnostic tool, and then to
select an M-estimate which is near to this one with high breakdown point.
Another proposed possibility is to use a one-step M-estimate starting again
from an estimate with high breakdown point (Hampel et al. [6], p. 330, Ju-
reCkova and Portnoy [11]). As follows from the example (which was already
mentioned above) with LMS orthogonal to LTS (Visek [207]), these advices are
not helping too much. (For numerical examples of the diversity of one-step
M-estimates, LTS and LMS estimates see also Bocek and Visek [3], [21] or
[22].)

Of course, we usually select from the evaluated estimates of model accord-
ing to some objectives or ideas commonly accepted in the branch of science
the data came from. Sometimes however a statistically oriented tool may give
a hint in a form of rejecting a hypothesis that the respective model has gene-
rated data.

In the present paper we propose a statistic which may be used to reject
those estimates which are not “adequate” for given data. The statistic is based
on the weighted Hellinger distance between the estimates of density of residuals
in two halves of sample. These two halves of data may be created e.g. by
a “natural” geometric rule. The statistic can be also used to select the estimate
of the regression model which fits to the data in the best way. From the all
evaluated estimates we just accept that one for which the weighted Hellinger
distance reaches its minimum.

Let us give now some basic notation.

1. TEST STATISTICS

Let R be the real line and N the set of all positive integers. For any ne N
let R denote the n-dimensional Buclidean space. We shall consider for all ie N
a linear regression model with deterministic carriers

(1.1) Yi=XTf+e, i=1,2,..,

where ¥; is a response variable, X; = (x;, i3, ..., xi;)7 is the i-th row (assumed
as a column vector) of the design matrix (if the intercept is assumed, then we
suppose x;; = 1 fori=1,2,..), B° = (B3, Y, ..., By is the vector of regres-
sion coefficients (unknown but fix), and {e;}{2, is a sequence of independent
and identically distributed random variables - distributed according to a dis-
tribution function F. The distribution function is assumed to be absolutely
continuous with a finite supremum of its density f; say sup..p f(x) < V< 0.
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The matrix form of model (1.1) is then

Y =Xf%+e.
Let w be a kernel, w: R—[0, ov) and, for any ce[0, w), yeR, Y*=
(Y, Y1515 ... YT, 1 1<k < 2n, and fe RP define the kernel estimator of the
density

‘ k
il Y%, 8.9 = G, T wle™ 0=Vt XT ).

Assume that we have at our disposal 2n observations and put
Yﬂﬂ:ll = (Yls st LRRS] Y;n)T; Ym'm = (Km—}ls Y;H-z; LT YZn)T

and
Y = ([Y(n.i)]T, [Y(n,l)l’r)fri

Similarly for the corresponding design matrices X™% and X®2. We shall
consider for some sequence {c,}i=; 0 of the real numbers the kernel es-
timators

fl,n (ys Y(ml)s E: Cu)s ﬁM-l,Zn(ys Ym,z’: ﬁs Cn) aﬂd fi.Zn(ya Y(ﬂ)’ ﬂ) Cn)*

In what follows let us write briefly ¥, Y'" and ¥® instead of Y™, Y* and
Y®™2) respectively; similarly for the design matrix X and its partition. Through-
out the paper the sequence {c¢,};- will be fix, and hence we shall abbreviate
the notation of the kernmel estimators as f,(y, Y, f) instead of full
fl.n (y: Y(”'”a ﬁ: cn)a ﬁl()’s Y{ma ﬁ) imtead Df fné—l,ﬁm (}’, Y{ﬂ,Z)’ ﬁ:r Cn)a etc. Fin&l’
ly, for a sequence of positive numbers {a,};% ~ o and fe RP define the statis-
tics of the Hellinger type

dn
H(Y, f=n | 120, YO, h=F1200 YO, B o0, Y, Bdy.

Zan
Evidently, H,(Y, B) is not precisely the Hellinger distance of respective estima-
tors of density. We have included into the formula which determines H, (Y, )
a “weight function” in the form of f,,(y, ¥, f). We have done it to be able to
cope with some technicalities. On the other hand, a heuristic justification of
such a step is however rather straightforward. As the kernel estimates are “the
most unreliable” at their tails. It is hence necessary to take the information
about the density at the tails with a caution or, in other words, the information
at the tails of the estimators is to be somewhat weighted down.

2. ASYMPTOTIC DISTRIBUTION OF TEST STATISTICS

The test which will be proposed below will be based on the following:

TureorReEM 1. Let the following conditions be fulfilled:
(i) The density f has a finite supremum and the bounded second derivative.
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(i) The sequences {a,}7y, {Ca}nry and {d,}7-; are such that
(a) ("—am an) = {yER: f(y) > dm}y

Gniy 20, and (—a, a) 7 {yeR: f(3)>0} as n— w0,

(b) ¢, =o0(1), dyey* = 0(1) as n— o0,
(c) there exists 15(0 1} so that

o' | fdy=o(l) asn-co,
l?i:’{l"‘)ﬂu
(d) n"tey%a? =o0(1) and n" e, 2a,d; ' = o(1) as n— 0.
(i) For the kernel w(t) we have

lim t*w({t)=0, supw()<K<owo and j' tw(t)dt =

fe} -+ o0 =R

and there exists {L,}%-; such that, for T as in (i) (c),

e, M2 | wr)di=o0(1) as n—->o0 and limsupe,L,a, ' <.

{t]>Ln Ao
Then the asymptotic distribution of
m(m .BO) = AJI {HH(I’; ﬁu}“mn}
is N(0, 1), where

", '—%eﬁl j' w2 (t)dt

and

42 = -c,, 1 j F2(y)dy j { j‘ w(t)w(t+2)dt}” dz.
haal” <BR e < «}

For the proof of Theorem 1 we shall prepare several assertions. However,
prior to doing that let us discuss the assumptions of the theorem because it
need not be clear immediately whether they can be fulfilled.

Remark 1. Firstly, to construct the sequences {g,};=1, {Ciir=y and
{dy}i=y in order to meet assumption (ii) of Theorem 1 we need to start from
{d.}x=1. Then we may find {a,}:> (under some mild and acceptable assump-
tion on the shape of f, e.g. that {y: f{y) > d,} is an interval) to fulfill {ii)(a). Now
we need to find {¢,};% so that n™'¢, *a2 = o(1). If it is not possible, we have
to change {a,};%=, to some {d,};%, so that (i1)(a) is fulfilled, 4, < a, and there is
{e,} 4 so that n™* ¢, * a2 = o(1). May be that we obtain a sequence {d,}%%
such that (—d,, @} » {yeR: f(y)> 0} rather slowly. Nevertheless, we may
always select &, ~ 0 so that &, > ¢, and (ii)(b) and (i) (c) are also fulfilled. If now
the second requirement in (ii}(d) does not hold, we have to take some {d}}=,
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so that d¥ > d, for all ne N to meet (ii)(d) (and naturally to keep d; ~ 0). This
is also always possible. Now we have to return to (ii)(a) and may be that we
will have to change the sequence {d,}5=; to {a}}2% so that a¥ < d, to fulfill
(11) (a). Similarly, it may happen that we will be forcfed to change {é,}=, so that
¢y > &, for all ne N and that (ii) (b) and (ii)(c) will be fulfilled (this is possible for
any {ay}= ,, ay increasing to the upper bound of the support of f (y)). But then
(ii){d) keeps to hold also for {a}};% 1, {e¥}= | and {d¥}1 ;. Now, we may select
the kernel w (with sufficiently modest tails) so that the assumption (iii) is fulfil-
led. This means that the assumptions of Theorem 1 are not surely contradic-
tory and, moreover, for the most of densities they can be easily fulfilled.

Secondly, it may seem that the second part of (ii)(b) together with the first
part of (i) (d) implies the second part of (ii)(d). Of course, this depends on the fact
how the second part of the assumption (ii) (b) is understood. If we assume that it
means that there is ngeN and k> 0, K < o so that for all n > sy, we have
k <d,c;* < K, then really the second part of (ii)(d) is redundant. If, however,
we assume that for all » > ny we have only d, ¢, * < K, then it may happen that
d,cy ' 0 as n— oo, and then even under n~'c,;*a? = o(l) we can have
n ey da,d, ' A oo as n—s co. After all, the assumptions, except of the second
part of (ii) (d), “allow” d,’s to converge to zero rather fast and it would cause that
the second part of (ii}{d) can be violated. =

For the proof of the following assertion see Csorgd and Révész [5], Lem-
ma 6.1.2.
AsserTION 1 (Csorgd and Révész). Let the kernel w(t) be bounded with
@
lim t*w{)=0 and j tw(t)dt =

i~ w

Moreover, assume that the density f(v) has a bounded second derivative on an
interval —o0 K A< B < 0. Then for any £¢> 0
sup Eﬁ.(v Y, f—f () = O(ch).
AtesysB-

LemMma 1. Let the asf"sumpzions of Theorem 1 be fulfilled. Then

" 5 La2 , Y9, B0~ 12l (0, Y, BO1 Lhoa (v, Y, B~ Efon(p, Y, )1 dy

an
=0,n "¢, %a,) as n-ow.

Proof. Making use of the Schwarz inequality we find an upper bound of
the squared value on the left-hand side in the form

@21 » ,} L2 (v, YO, BO)—f32 (p, YO, B Efou (v, Y, B%)dy

= {Ipy

X | a0 Y, B —Efon(y, Y PP E™ Fon(y, Y, £°)dy.

=y
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Now we easily verify that

n

22) Efily, YW, %= j' {nlc Z w(cs ‘(y-—Z))}f (2)dz

- g —2)) f(2)dz = Efu(y, Y?, f°) = Ef2a0, Y, B°).

Consequently, the first factor of (2.1) may be written as

@3) w720, YO, B)— B2, YO, B9

gy

—[f32 (0, Y?, B)—EV2 [, (v, Y?, B} Efon(y, ¥, ) dy

<82 { L7120, YO, P)-E*L (5, Y, 20° B, Y, §0)dy

-y

+ 37 [fi2(y, YO, B)—EV2 [, (y, Y@, BOT*Efu(y, Y, B%dy}.
We shall use now the inequality (a—b)? < b~ *(a®—b%)? valid for a > 0 and
b > 0. We obtain again an upper bound for both the terms in (2.3) in the form

8n* af E Y[y, YO, B[Sy, YO, BO)—Ef, (v, YO, B dy, j=1,2.

= Gn

Now,

24 {Bn‘g [ ETUA0, YO, A0, YO, B)~Ef (v, YO, pOT*dy > L }

Ty

L?a T B0, Y0, VELLO, YO, ) L0, YO, BT dy
2 53 am
Eﬁ?’;ﬂ JE if{ s - Ew]*+- 4{E[w —Ew]*}* }dyw

where LeR is arbitrary. Further (please, keep in mind that w(t) = 0)
(2.5) E[w—Ew]* < E{[w—Ew}?*[w—Ew]*} < 4[supw(z)]* E[w—Ew]?
xR

< 4sup® w(z) Ew?* < sup® w(z) Ew = dc, sup® w(z) Ef,,

zeR zeR zeR

and also

E[w—Ew]* < Ew? < sup®w(z),

zeR
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and so

(2.6) {E[w—Ew]*}? < c,sup® w(z) Ef,.

zeR
Consequently, taking into account (2.5) and (2.6) we conclude that (24) is
proportional to L™, and hence the first factor of (2.1) has order 0, (¢, ® a,). Due
to the independence of es, for the second factor of (2.1) we have (again LeR,
arbitrary)

P{ } [ [y, ¥, B)—Efu(y, ¥, P E™" fandy > Lu™ 7 0,

fn
<(@dLe;ta) ™t | E~ ' f,, E[w—Ew]?dy < (2L)™ ' supw(z).
~ zed
Since L was arbitrary, we have the second factor of (2.1) of order @,(n" ' ¢, ' a,).
Now, taking into account that we have considered the squared left-hand side of
the expression given in the assertion of the lemma we complete the proof. =
LemMa 2. Let the assumptions of Theorem 1 be fulfilled. Then for all com-
binations of i, j =1, 2 we have

n | L7200, Y9, 9 EM2 (. YO, PO LG YO, B~ Ef (. YO, 9]

i
=0,(n" "¢, %a,).

Proof. Asin the proof of Lemma 1 we obtain a boundary for the squared
left-hand side in the form

n? j [Fi2 (y, YO, BOY—EY2f, (y, YO, B Ef, (v, YO, B dy

x § [uly, YO, B)—Ef, (v, YO, BV E™* £, (v, YO, B%dy
(keep in mind (2.2)). The rest of the proof uses the steps which were performed
in the proof of the previous lemma.
LeMMA 3. Let the assumptions of Theorem 1 be fulfilled. Then for i =1, 2
we obtain

iy
@7 n § [P0, YO, BO)—E2f,(0, Y9, 1% dy = O,(n™ 1 ¢; % a,dy ).

Proof. We shall use again the inequality (a—b)*> < b~ ?(a>—b%? a = 0,
b > 0. We infer then that the left-hand side of (2.7) is bounded by

n | E-2f0, YO, )l YO, B)— Efi(y, YO, B)1* dy.

- gy
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Now, using Assertion 1 and the assumption (ii)(b) we may find nyoe N so that
for all n = n, we have

sup [Ef:n {yn Ymu ﬁﬂ) "f (Y)I < %dm

yeR
and hence
jn E2f\(y, YO, O, YO, BO)—Ef,(y, YO, BO)1*dy

<2470 [ EV L, YO, B A, YO, B)—EL(y, YO, 14 dy.

Now
ELf,0, YO, B°)—Ef (v, YO, 1% = 7 * {n "> E[w—Ew]*+n~> E* [w—Ew]?}.
Making use of the inequalities

E[w—Ew]* < 4[Ew? +E*w]sup® w(y) < 8¢, (sup® w()) E fo(y, Y, B9,

yeR yeR

E? [w—Ew]* < 4[Ew?+E*w]sup® w(y) < 8c,(sup* w() E £, (v, Y9, %)
yeR yeR
and (ii}(a) of Theorem 1, we find (as in (2.4)) that

28) 2 B~ YO, PYELA(, YO, f)—EL(, YO, BT dy

< 128n" % a,c, *sup® w(y).
. yeR
Now let the set %,; be determined as

{o: n 3’ E~2f,(y, YO, BO[fuly, YO, B)—E [u(y, YO, pO)1* dy

— i

= Kn 1P e 3 a,d Y
for a positive constant K. Taking into account (2.8), we have

P(@n) <K 'n*?cla;'d, 5 E2f(y, YO, 8%

-l

xE[f,(y, YO, B)—Efp (v, YO, )] dy

<KT'wPcart [ B, YO, F)ELLY, YO, F)—Ef0, YO, BT dy

< 128K 'n~ 12 supdw(y)
yeR

and the proof is complete. m
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Lemma 4. Under the assumptions of Theorem 1 we have

n f L7420, YO, P)—E2 5, YO, T2
x [y, Y®, O —EYV2f,(y, YO, B2 dy = O,(n" ' ¢; % ay).
Proof Let LeR be arbitrary. Using once again the inequality

(a—b)? < b %(a>—b? (@=0 and b > 0), we obtain

P{?’l T [fﬁlz (y, Ym, ﬁﬁ)“—'Eiﬂf;(y, Y‘“} ﬁo)]z

-l

x[f32 @y, Y@, BO)—E"2f,(y, Y, B dy = Ln " ¢; > ay}
< n? c? ‘}?' { 1 1

La, o, \Ef,(y, YO, B Ef(y, Y®, %)

X E[fn(yw Y“}, ﬂa)_“Eﬁl . YW, ﬁo)]z

xE[fuly, Y?, B)—Ef (v, Y, ﬁ”ﬂa}'dy

ZEE' w 2
E E 2 E e -
La cﬁ_a f{ [w—Ew]’}* < (S;:f W) spif SLOP 2w(z).

Since L was arbitrary, the proof is complete. m

The proof of the next lemma will be based on Theorem 6.1.2 of Csdrgd
and Révész [5]. For convenience of the reader we will give this theorem here as
an assertion without proof.

ASSERTION 2 (Csorgd and Révész). Ler G,(x) (—oo € A<x<B< w;
n=1,2,..) be a sequence of Gaussian processes with

EG,(x)=0, R,{u,v)=EG,)G,({)

and 5 5 5
E [ Gi(x)dx = [ EGZ(x)dx = [ R.(x, x)dx = m, < + 0.
p/ p! 4

Assume that R,(u,v) ((u,v)e(A4, B)?) is continuous at any point (u, u)
(A < u < B), square integrable,

B BB -
A7 = Varf G} (x)dx =2 [ R2 (u, v)dudv — c0  (n—> ),
A YA

and
29) j ([A (u, v) h v}dv) du L0 (s o0)
jﬂfﬁﬂj(u v) dudv
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for any heI?(A, B). Then

.a.;l(?Gﬁ (x)dx—m,) 3 N, 1).

A

LemMA 5. Let the assumptions of Theorem 1 be satisfied and put
210)  HJ(% ) =n | [hO, YO, F)~F0, YO, pO1% dy.
Then the asymptotic distribution of
Y, B°) = 87 {H, (Y, B°)— 1t}
is N(0, 1), where ni, = 2¢;! ffm w2 (t)dt and
B=8c;t [ f200dy | { | w@w(t+2)dz) de.

-y

Proof First of all, let us recall that for the sequence of independent and
identically distributed random variables {¢;};2, the empirical distribution func-
tion is determined as

Fn(x: ﬂJ) = z I{ei(m)sxk-
Hi=y
We shall write briefly F,(x). Denote by F{(x) the corresponding empirical
distribution function of Y- XTg° (i=1,2,...,n for j=1; respectively,
i=n+1, n+2,...,2n for j=2). Put (for te[0, 1])

BY (1) = /n[F¥ (inv F () —1]
and define @,(y, 2) = ¢; *w(cy ' (y—2z)). Then we have
{h . YO, )=l Y2, B0} = /n{Eep 00y, )~ Eppr (v, )}
= :E BV (8)d, pa(y, inv F (£))— i B2 (t)d; @y, inv F (1))
(see also Csorgd and Révész [5], p. 223). Let us dénote by G,(y) the process

ﬁ{ﬁ?{yﬁ Yﬂ): gﬂ)_j;(y’ Y(zjs ;BD)}: =00 <y < 00. Then we have EF Gm(y) =0
and

R, (u, v) = EG, (1) G, (v)

=E {} (B (1) — B2 (6] d, @uu, inv F (1)) } [B"(2)~ B (@)1 d. ¢a (v, inv F (2))}
i} ‘ 0

15 — PAMS 21.2
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il

aﬂaw.;-a 3 Sy
O ey a0 Ty e

E{[BP (t)—BP (Y1 [BY" (2)— BY (2)1} d: @n {1, inv F (1)) d. @, (v, inv F (2))

(ELBY 0 BY @] - E (B (0 B ()]~ E (B (0 B (2]

+

E[BP (1) B? (2)1} d; @n(u, inv F (t)) d; @, (v, inv F (2))

} (EBY (0B () + EBP (1) B (2)} d, @ (u, inv F (6)d, 9, (v, inv F (2))

il
5 By

= ij. @ (U, X) @, (v, Z'C)] {x)‘dx

(see again Csdrgd and Révész [5], p. 227). Now let us recall that #i, and 42 are
given by

=&l o€ =]
iy = | Ry(t,t)dx and JA2=2 [ [ R*(t,s)dtds
=

l* * R €]
(see the previous assertion). We obtain

ity = 2¢, 2 }J ? w? (e, 1 (t—x)) f (x)dxdt

-

= 2¢, ! j' j'w (@) ft—cy2)dtdz = 2¢; ! j' w?(z)dz.

Similarly,

(211) A2=38 af Gj? {ew ? wiey t—x)wler  (5—x)) f (x)dx}’ deds
=38 T ? {e! rf wizjw (Jfl(S“t)+z}f(t~*c,.z)=dz}zdxds
=8 nj? ? fet j w(z)w(w+2) f(t— c,,z)dz} dt-c,dv

. j firydr j { j' w(Z)w(v+2)dz}” dv.
gy el
To be able to use Assertion 2 we need to verify that R,(u, v) is continuous at
every point (¢, ), t € R (which is however evident due to continuity of kernel w),
and also that the condition (2.9) holds. We have for any A(f)eL,

o

T LT e § wler e=wier*6-x) S @ dxh ] ds

o
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= T [ ? T w(Z)W(v+2) f (s— e, v—¢,2) dz h(s—c,v) dv]’ ds

<V (j? B (r)dr| ? w(z)w(12+z)dzdu]2: o).

s ]

This represents the numerator of the ratio in (2.9). The denominator is equal to
142 and (evidently, see (2.11)) converges to infinity. So the whole ratio con-
verges to zero as n — o, which means that the condition (2.9) is fulfilled. Hence
using the Assertion 2 we infer that the statistic

A § OO, YO, B, YO, BT dy— i)

converges in distribution to N (0, 1). To complete the proof it remains to show
that

A n{ | LA, YV, BO=F.(y, Y®, g1 dy} = 0,(1).

vi>an

In order to do this, let us write the left-hand side as

Atn{ { [UA0. YO, B)-EL0, YO, B0
=L@, YO, B)—E fu(y, Y, BT} dy
<207t [ {LAG, YO, O)—EfG, YO, T

I:’Jl'}ﬂn
+Lfuly, YO, B)—E f,(r, Y2, B91%} dy.
Now for any ¢ >0

PUA7 0 [ (. YO, B)—Efy (v, YO, B2 dy > 8)

< x‘ﬁ"‘lcﬁfzﬂf cf w(en {o—2)—Ew(ca * (v—e))]” f (z) dzdy

SHS e, [ [ wier ' (y—2) f(2)dzdy,
where 2 =8["_ f(dy[° {|°_w@w(+1dt}do. Consequently, the
upper bound for the studied probability may be written in the form

A e 2P| WO fy—te,)dt}dy

o

=T e I:[" w2 (@) f(y—te)dt+ [ wr(t) f(y—te,)dt} dy.

an —Ln ft] > L
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The first term may be (starting with some ngeN) bounded by
HO eyt T w? (£) dt Qf fdy=o0(l) asn- oo,
=Ln 1 -ty
and the second one byL o
Xﬁ”‘c;”zuj W) gf fy—te)dy}de
8] > Ly - oy

=H6"c,'? [ wr()dt=o0(1) asn— 0.

jt}>Ln
That completes the proof. &
Proof of Theorem 1. Due to Lemma | we have

Hy(Y, B =n | 320, YO, B)—FH2(p, Y, fOY1 Efan (v, Y, f°)dy

o
+0,(n" e % a,).

Using the equality
P, YO, p—EV Gy, YO, )

’ = %{ﬁl(ya Y’(ﬂ, ﬁ}l“Eﬂa(}’, Yﬁ)s B)"{f:m (ys Y‘[ﬂ! m“EIizﬁ:U’r Ymv ﬂﬂg}

xE"12],(y, YO, §)
and taking into account (2.2) we obtain

H,(Y, f)=n | {% [/, YO, B)—Ef(y, Y, B%)

-ty

—[F¥2(y, YO, B)—EY2 f,(y; YO, BOT2] E~2 ], (y, Y0, §°)
“%[ﬁ(}’: Y&)a ﬂﬂ)mEf;‘ (ys Ym}! ﬁu)’%r_fiﬂ@’ Yﬂ}r ﬁg)—'Euzj;(y’ Y’@), ﬁ@)]l’]

2
xEmleﬁl(y? Y(Z)? ﬁﬂ)} Efzn(yQ Y, Bl})dy”'_{pp(n“llzc;z a,).

Now using Lemmas 2-4 we obtain

Q1) H (8= § A0, YO, B)= L0, YO, B dy

d“
+0,(n" e 2 a,d )
and the theorem follows from Lemma 5. =

Remark 2. It follows from (2.10) and (2.12) that the statistics H,(Y, fi°)
and H,(Y, B° are asymptotically equivalent, and hence we could use for the
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purpose which was discussed in the Introduction the statistic #Z, (¥, 8°) instead
of #,(Y, B°). The reason why we have considered at first 5, (Y, f°) was the
fact that the Hellinger distance is a well-known statistic which was proved to
be useful and applicable, and hence many statisticians became familiar with it.
On the other hand, it is evident that it is much easier to treat 5%,(Y, p° than
(Y, B°).

To be able to construct a critical region for a test based on 5%,(Y, f°) one
needs to estimate [*_ f2(r)dr.

To do this we shall use the following assertion. Since the assumptions are
somewhat different from the assumptions of Theorem 1, we will give them
precisely following Cs6rgd and Révész [5]. For the proof see Theorem 6.1.5
in [5].

ASSERTION 3. Let f vanish outside a finite interval (C, D) and assume that it
has a bounded second derivative on this interval. Moreover, let the kernel w vanish
also out of a finite interval (4, B) with A <C <D < B and varupmw(t) S M
together with jfmtw (t)dt = 0. Let us put

g2 = ?fz(u)duf {fw(z;lﬁv)w(z)dz}zdua
c 4 4
Then
& 207 (ney [ [0, Z, B)—7 O dy— [ w2 @t} » N0, 1)
y 4

in distribution, provided that n™'c; ¥*log?n = o(1) and ncd* = o(l).

Remark 3. We formulated Assertion 3 in the form as given in CsOrgd
and Révész [5]. As demonstrated in Theorem 1 we may avoid the assumption of
the bounded support of the density f by a more complicated setup with in-
creasing intervals (—a,, a,). In both approaches, i.e, in the approach assuming
the compact support of density as well as in the approach with a sequence of
intervals (the length of which increases to infinity), we have to cope with the
behaviour of the density and its estimator in the tail areas. The setup given in
Theorem 1 is (a little) more general, however we have to pay for it by the
smaller transparency of proofs and by a lot of technicalities in them. In spite of
this disadvantage we have used it, just to show that the bounded support of
density is not an inevitable assumption, and so that in Csérg6 and Révész [5]
the approach with compact support was used only to simplify the text. Of
course, it also took into account the fact that when we apply such theoretical
results for finite-size samples (especially for modest or small sizes) it is ques-
tionable to insist that data were “generated” by a distribution having the
density with the unbounded support or not. That is why we will further use the
setup which was preferred by Csorgé and Révész. m
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THEOREM 2. Let us assume that f has a bounded second derivative and
vanishes outside a finite interval (C, D). Let also the kernel w vanish outside
a finite interval (4, B), A< C <0< D< B, and var,pw(t) < M together
with [* tw(t)dt = 0. Let us put

A.(Y, % = n{ [fu(y, YO, BO)—f, (v, Y2, BN]2 (v, Y, B°)dy.

L3 log?n = 0(1) and ne)* = o(1). Then

[Af]WI {ﬁB!(Y’ ﬁn)—mﬂ}
has the asymptotic distribution N (0, 1), where

Finally, let n~

[4¥7? = %c{’ ?‘fﬁ(r, Y, ﬂ“)dr? {}E w(z)w(v—kz)dz}zdv

and where m, is the same as in Theorem 1, ie.

1 B
m,==c, ' [w?(z)dz.
27 4

Proof. The theorem follows from Lemma 5 and Assertion 3 (do not be
confused that integration is taken only over the interval (4, B) although
fulr, Y, B° does not necessarily vanish outside this interval; however, the in-
tegral over the complement to (A4, B) is not asymptotically significant, see
Assertion 3).

To bring the considerations which started in the Introduction to the end
which would be applicable, we need to find a statistic which would depend only
on the data and not on the unknown value f° This will be done in the next
theorem.

TurorEM 3. Let the assumptions of Theorem 2 be fulfilled. Moreover, let
f be an ﬁwconsismmz estimator of §° and let w (z), w"(2) and [’ (v) exist every-
where. Further, let
]
(213) | w(@)dt <oo, suplw (9 <co, supw’(f] <o
- teR teR

and  suplf'(y) < co.

yeR

Finally, let

S X = 0()

i=1

@2.14)

IR

and

D
(2.15) £f3(y)dy < 0.
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Then
gﬁ{}yﬂ‘ 6) = ﬁnle ﬁn)"“@p(cn}'

Proof. Not to burden the paper (which is already full of technicalities) by
a lot of steps which are similar to those from the previous text, we shall only
indicate the idea of the proof. Let us write

B
ﬁn(}}; ﬁ) = ”f{ﬁnly'» Y(”! E}mfn(ys Y(Z}:« ﬁ}]z‘fln D)n Y; B)dy

- ”i{[ﬁ,(y, YO, B)— 10, YO, BI+LL 0, YO, B Ly, Y2, )]
+LH0, YO, B~ f.0, YO, BNY fan (v, Y. F)dy

and consider at first
B
(2.16) nﬂﬁmymj%ﬂmYWﬂmﬁM%Km@

s L5 VBTG il 3 wier 0+ X B,

i=1
where

e (min {y— Y+ X7, y— Y+ XTp°}, max {y—Yi+XTB, y— Y+ XT ),
ie.

ni€ (min {y—e;+ X7 (B—p°), y—e}, max {y—e;+ XT (f— ), y—e.}).
To make an idea about the expression in (2.16), let us study
2n

@17 E;é?ji[; AXE @O el 3, wler 0= T+ X] ) dy

2n
2 -
= sﬂzz VXIG=Fw e ] 3 wlet (r—e))dy
B Ch g4 i= i=1
Fix an &> 0. Since f§ is /n-consistent (ie. \/n(f—p°) = 0,(1), there is
a finite constant K, such that with probability at least { —z we have y—¢;—n" 2 K,
< <y—e+n 2 K,. Now the expression in (2.17) can be rewritten as

mmNMLMWM(wwwmﬂ

“A i=1

x \Z w(cr ' (v —ej))dy,

j=1
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where

& e(min {y—e;, 1}, max {y—e;, #:})
and
(2.19) ol < n V2K,

Since w(z) = 0, the expression in (2.18) is bounded by

§2(l/m Z XT (BB (e v —ed)]’

Zn n

+[/n 3 XT(6 ﬁ")w”(«f,)f]}z wier t(y—e))dy.

i=1

The assumptiun that sup,.g |w”’(2)] < co together with (2.19) yield

in
51 N Z bl ﬁ")w"(&)zi]’j;lw(c;l(y—ej))dy= Om ;).

Cll A

Therefore we have to cope with the expression

(2.20)

;’1 g. X illw (er * (y—en)) é X (et (r—e)

xjgl wlcs t(y—ey)dy.
Now we shall use the fact that the expression
'f;ig 1Xdlw' (ex* (v—e))

is approximately equal to

Ew' (e, .- 31) Z"Xi

A=y

So we need to study

jwf( Tly— z)) f(z)dz and j W (e r—2)]* f (2)dz.

-

Using the transformation ¢, *(y—z) = u we arrive at

G

[ wi'—2)f@dz=c, I W (1) f (y— ¢, ) du

-

= Cy j W @) f )+ cow (1) [ (k) ul du
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for an appropriate |x;| < c¢,|u|. But then by (2.13) we obtain
(2.21) ? wwf(y)du=0 and cZ ? W' () f' ()udu = 0(c?).
Along similar lines we find that

I W o=@ = o

Therefore, putting & = ¢y * | X || (w' (c; ! (y—e))—Ew' (¢; ' (y—e,))) and apply-
ing the strong law of large numbers (see e.g. Breiman [4], Theorem 3.27), we
obtain

R

3 X o )~ B (ex 2 —e)) = 0, (D)

.
i=

Approximating the expressions

= X i (e e,

g KW 0-e) and - 3w 0-e)

ey =1

in (2.20) successively by

Z IHX,:“,

i=1

Ew (¢, ' (y—ey)

zl*—-*

Ew (¢, (y— el}‘ i [[Xdl and ¢, Ew (e, '(y—ey)),

respectively, and taking into account (2.14), (2.15) and (2.21), we find that (2.17)
is 0, (c,). By similar considerations we obtain the same result for (2.16). A chain
of analogous steps then completes the proof of the theorem.

Remark 4. The assumption that the support of F is finite represents
naturally some (theoretical) restriction of generality. As mentioned in Remark 2,
due to the fact that in applications we always have a finite number of obser-
vations, it may occur that it does not restrict applicability of the result. How-
ever, much more important for the practical purposes is the problem that is
common to all the asymptotic results: “How will the asymptotics really
work?” a

The answer to this question needs a reasonably large study, preferably on
real data sets, taking into account some sufficiently rich family of methods for
estimating the regression model, Therefore such a study has to be postponed to
a special paper.



486 I A Vigek

Nevertheless, to create at least a very first idea about a “sensitivity” of 4, (Y, £)
with respect to changes of J§ (or, more precisely, about an “ability” to distinguish
different f’s) we give the following artificial Example 1. (Next Example 2 offers then
a very first insight on the behaviour of statistic J,(Y, f) on the real data.)

3. NUMERICAL EXAMPLES

ExampLE |. We have considered the linear model
(3.1) Y=pfx;+B:x:+e

and we have generated data which are given in Table 1. The values of regres-
sors (x;y, X;») for the first half of data (ie. for i = 1, 2, ..., 40) were generated so
to be uniformly distributed in the triangle [ -1, — 17, [—1, 1], [1, 1], while for
the second half (i.e. for i =41, 42, ..., 80) in the triangle [ -1, —1], [1, —11,
[1, 17. Such a division of data seems to be quite realistic, since in real ap-
plications (see Example 2) we will divide data mostly according to the position
in the factor space. V

Values of ey, e,, ..., egq wWere generated by applying a polynomial approx-
imation to the normal quantile function (see Abramowitz and Stegun [1]) on
the uniformly distributed numbers and the resulting numbers were tested for
normality (see Shapiro and Wilk [16]). Then we have assumed the true model
(3.1) with f; = 0 and B, = 0. This means that ¥; = ¢;, i.e. ey, €3, ..., &3 COIN-
cide with values of response variables. ~

Table 1. Simulated data

The first half of data The second half of data
| Case Y X, X % Case Y X 1 X;_!
1 —~0.0278 0.7537 0.8400 41 -(.0556 0.2351 | —0.6782
2 0.9238 0,2399 0.2619 42 08815 | —0.3857 | —0.7695
3 —0.0834 0.8962 0.9584 43 0.2818 04168 | —0.3343
4 12208 | —03673 0.6822 44 0.6568 | —04799 | —0.6689
5 —0.1394 | —0.8629 0.6864 45 —~{(,1114 | —0.6188 | —0.8509
6 —~0.1958 | —0.5276 0.3366 46 ={,1676 | —0.3346 | —0.5493
7 -0.2529 0.6635 0.8421 47 1.4204 0.6719 | —0.7896
8 -(.3109 0.3726 0.8106 48 1.1640 ~0.2910 | —0.6352
9 00278 | —04063 0.9508 49 —-02243 | —0.9843 | —0.9899
10 —0.3689 | —0.2691 0.2209 50 —0.2818 0.5004 | 03201
i1 0.7645 | —0.9747 0.9088 51 0.5891 0.8870 0.7417
12 0.3699 0.1885 0.6780 52 0.1676 0.9318 0.6582
13 1.0129 0.8870 0.9873 53 09674 | —0.3656 | —0.6346
14 0.1394 (.5002 0.9386 54 —{3.3403 ~{1.5189 ={.6075
15 ~04303 | —~0.3184 (.7459 55 005356 05101 | —0.6666 |
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Table 1. Simulated data {continued)

Case Y X, X, Case Y Xy X,

16 —.4923 0.9421 0.9803 56 —0.3990 | —04439 | —04639
17 —{0.5563 | —~0.0709 0.6035 57 0.2243 —~04070 | —04670
18 0.4923 0.2551 0.5740 58 —{.4611 (.8893 0.1933
19 —~{.6226 —(.5090 0.8582 39 —(.5240 | —09833 | —0.9858
20 —0.6918 | —0.2109 | —0.1201 60 - {5891 07260 | —0.8686
21 —~{0.7645 | —0.8251 0.9968 61 07277 | —0.6695 | —0.7386
22 —{.8415 | ~0.5962 (.2590 62 0.5240 | —-09731 —(.9980
23 —0.9238 0.0310 0.2470 63 —0.6568 0.1018 | —0.0502
24 0.2529 0.6227 0.9019 64 | 0.3403 0.1052 | —0.6904
25 0.5563 —0.4704 0.5341 65 04611 00643 | —0.5707
26 1.3478 -(0.5214 0.8752 66 ~0.7277 0.3307 | 07538
27 10129 | —0.6669 | —0.2313 67 —0.8024 | —0.6400 | —0.9646
28 ~1.1108 | —0.4020 0.2044 68 —(.8819 00020 | 07170
29 1.1108 | —0.8547 0.3699 69 —-09674 | —04136 | —0.5663
30 0.8415 {.5555 0.9758 70 0.8024 08188 | —0.7828
31 —1.2208 —.8713 0.6129 | 71 —1.0606 0.7319 0.1330
32 0.6918 —{.4807 | —0.1217 72 —1.1640 | —0.6340 | —0.9350
33 0.3109 | —0.9096 09114 73 01114 0.3593 | —{0.8698
34 —1.3478 —-(0.1972 0.1177 ] 74 0.3999 0.3191 —{.2061
35 04303 | —00936 | —0.0247 75 —1.2817 0.5526 0.0260
36 0.0834 0.1495 04817 76 —14204 | —07587 | —0.8561
37 0.6226 0.5069 0.9061 77 00000 | —00160 | —0.7893
38 0.1958 | —09474 0.7699 78 1.2817 ~0.3150 | —0.7289
39 1.5014 | —0.2868 0.8067 79 1.0606 0.9344 | —0.21%96
40 -—1.5014 —0.4667 0.2120 &0 —1.5936 | —04742 | —-0.8502

when f; =0 and f, =0, the value H,(Y, f) in the first row represents the
value of a weighted Hellinger distance of residuals in the “true” model and
the values of statistics Hgo(H, ) and #5,(Y, f) hint that the both halves
of data are really very similar. In the other rows of Table 2 the values of
H,(Y, p) and (Y, p) are given for 41 values of f equidistantly spread (as
the vector) over one half of the unit circle (i.e. we may interpret the values
e.g. in the second row of the left-hand half of Table 2 as follows: An esti-
mator has given the estimate f§, =0, f, = 1, and using corresponding re-
siduals

ri= Y= (X 0+ X, 1)
we have evaluated Hg, (Y, fi). Since 5 percent quantile of the standard normal

distribution is 1.645, our test rejects the hypothesis that f; = 0, f, = 1 may be
a true model.
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Table 2. Sensitivity of statistics

B | B HyolY, B) | #o (Y, B) By B2 Hyo(Y, §) | #50(Y, B}
0.0000 0.0000 (.0020 —{),3595 | 0.00001 0.0000 0.0020 -~{),3595
0.0000 1.0000 2.1870 26731 0.0000 1 1.0000 2.1870 2.6731
00785 0.9969 2.1490 2.6221 —~00785] 0.9969 22120 27017
0.1564 09877 20548 24922 ~0.1564 | 09877 22552 2.7454
0.2334 0.9724 1.9023 22835 —0.2334 | 09724 20855 2.5147
0.3000 0.9511 1.7320 20489 ~0.3090 | 09511 20170 24102
0.3827 0.9239 1.5763 1.8311 -0.3827 | 09239 1.890% 2,2289
0.4540 0.8910 1.4052 15916 —(.4540 | 0.8910 1.6813 1.9397
0.5225 0.8526 1.2581 1.3825 —0.5225 | 0.8526 1.5268 1.7187
0.5878 0.8090 1.1397 1.2107 —(0.5878 | 0.8090 1.3007 1.4078
0.6494 07604 | 0.9888 0.9955 —~(.6494 | 0.7604 1.0938 1.1238
0.7071 07071 | 08106 0.7449 —0.7071 | 0.7071 0.9078 0.8684
0.7604 0.6494 (.7049 0.5921 —-0.7604 | 0.6494 0.7692 0.6755
0.8090 | 0.5878 0.5979 (.4393 —0.8090| 0.5878 0.6202 0.4696
0.8526 0.5225 (.4818 0.2764 —0.8526 | 0.5225 0.4562 0.2435
0.8910 0.4540 {.3496 0.0933 —~0.8910 ] 0.4540 0.3334 00721
09239 0.3827 (0.2386 —0.0599 —(0.9239 | 0.3827 0.2347 —0.0669
0.9511 0.3080 0.1478 —0.1843 —~0.9511 1 0.3090 0.1520 —(.1855
0.9724 (.2334 0.0811 ~{.2750 09724 | 0.2334 0.0991 —~0.2619
0.9877 0.1564 0.0435 —(.3255 -0.9877 | 0.1564 | - 0.0597 —0.3215
0.9969 0.0785 0.0278 —{.3461 | —09%69 1 0.0785 0.0428 —0.3477
1.0000 | 0.0000 0.0371 —{0.3327 —1.0000 | 0.0000 0.0420 ~0.3503

Notice that nearby the most sensitive direction represented by f = (0, 1)
(and it would be similarly for f = (0, —1)) we have rather a wide range (up
to f = (0.38, 0.92) on one side and similarly up to f = (—0.45, 0.89) on the
opposite side) in which the test rejects (on the 5 percent level) the hypothesis
that f# is the true value (i.e. that such an estimate of the model is acceptable).
A small asymmetry in behaviour of the statistics (in the left and the right half
of Table 2) is caused by the fact that the randomly generated regressors for
the first 40 observations have fallen accidently into the region given by points
[—1,0], [—1,1], [1, 1], [0,0] rather than into the triangle [—1, —1],
[1, =11, [1, 1]. A similar situation occurred for the second half of observa-
tions.

By this example it is clear that the method is sensitive with respect to
division of points in the sample (according to position in the factor space).
Therefore, to be able to verify whether the obtained estimate of the model is
such that it generates in two (reasonably selected) halves of the sample ap-
proximately the same estimate of density of residuals we may need (for the
more-dimensional factor space) more (orthogonal) divisions. However, it was
clear from the very beginning that the statistic 5, (Y, f) will depend on division
of the sample. Nevertheless, obtained results give a hope that 3£, (Y, f) may
work quite well.
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ExampLE 2. For the second example we have used well-known “Star
data” and gave them here only in the form of a figure.
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Fig. 1. Hertzprung-Russell diaéram

The data describe the dependence of the light intensity of stars on their
surface temperature, they may be found in Rousseeuw and Leroy [15] and
were firstly published in Humphreys [8]. Since we shall construct the simple
regression, we may easily verify whether a given estimate is reasonable.

We have applied on the data the Least Squares, then the Least Median of
Squares (LMS) (see Rousseeuw and Leroy [15]), and finally twice again the
Least Squares on restricted samples which were obtained deleting from the full
data 4 (respectively, 6) points which had in the LMS estimate the largest
residuals, (The LMS estimate has been evaluated by the software of Pavel
Bocek (see Botek and Lachout [2], see also discussion on the algorithms used
for LMS in Visek [22] or [25]); we are grateful for the possibility to use it.) The
estimated models are briefly reported in Table 3, where fiY is an estimate for
intercept, 3 is an estimate of the slope coefficient for the explaining variable

“temperature”, 6% is an estimate of the scale, and finally R? stays for the

coefficient of determination.

Then the data were divided into two halves (both containing the same
number of observations) by a line which was orthogonal to the estimated
regression line, and corresponding values of the statistics H, and s, for these
models were gathered in Table 4.
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Table 3. Results of regression analysis (LS — the Least Squares,
LMS - the Least Median of Squares, 1.8-4 — the Least Squares with
4 points deleted, L8-6 — the Least Squares with 6 points deleted)

METHOD LS LMS LS-4 LS-6
g 6.79347 — 1274000 —4.05652 —8.50005
] —0.41330 4.00000 2.04666 304616
& 0.56463 0.19270 0.40580 0.34074
R* 0.044273 0.87833 (.36656 0.55435
Table 4. Values of testing statistics
{the abbreviations are the same as above)
METHOD LS LMS 1L5-4 LS-6
Hy+ (Y, f 1.5299 1.1084 1.2228 0.8262
Hyq (Y, B 1.2932 0.8198 0.9254 0.5330

Although it is clear from Table 4 that the test will not reject the hypothesis
that densities of residuals in the two subsets of data are the same for LS-
-estimate and LMS-estimate, the improvement of the model estimate when
rejecting 6 points is evident. On the other hand, it is out of question that the
test is (also) somewhat conservative one.

4, CONCLUSIONS

The previous two examples have demonstrated that the proposed statistic
of the Hellinger type may help to select from all the evaluated estimates of the
regression model such a model which fits best to the given data. The asymp-
totic normality of the test statistic allows then to construct also a critical
region.

One may object that the critical region of the test is based on the asymp-
totic result which may (sometimes) start to work only for a large number of
observations. Maybe that something like small-sample asymptotics for empiri-
cal processes could help, however an applicable theory is not still available.

As we have seen, the division of data into two (complementary) subsets is
(theoretically) arbitrary. Somebody may consider it as a drawback, somebody
as an advantage (to tailor the method to the topology of data). On the other
hand, the division which was used in Example 2 seems to be quite natural. In
the case of p > 2 we have to generalize the method of division as follows. At
first, we project the data orthogonally into the estimated regression plane and
determine the largest axis of the ellipsoid which is generated by the inverse
matrix to the sample covariance matrix of these projected data. Secondly, we
take from all the planes orthogonal to this axis such one which divides the data
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into two halves with the same numbers of points. In the case where some points
are in the dividing plane we should add them randomly to one of the “halves”.

The requirement that the (estimates of) density of residuals should be
(very) similar in (reasonably selected) subsets of residuals is probably quite
natural and transparent. The idea resembles, by its simplicity, e.g. the idea on
which the normal plot is based. This is the strong point of the approach and it
seems to be more than sufficient repay for the mentioned disadvantages. Of
course, one can argue against, as well as for, the present choice of the density
estimator and of the distance (i.e. against or for the kernel estimator and the
weighted Hellinger distance). They were chosen to demonstrate that at least in
a simple case the approach is tractable.

WNaturally, there may appear a question why we did not look directly for
the estimator defined as an argument minimizing the proposed test statistic
H,(Y, p). It is true that we may study estimators based on the kernel estimators
directly (Visek [18]). However, the theory accompanying such estimators seems
to be inevitably overcrowded by technicalities, and precise evaluation of the
estimators of this type is nearly impossible. Therefore the efficiency of such
a research is questionable. On the other hand, the evaluation of H,(Y, f) and
#, (Y, f3) for several regression model estimates which we have at hand may be
quite simple and quick (especially when we use some standard method of nu-
merical integration — in the present paper the Romberg method was applied).
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