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SELF-SIMILAR PROCESSES AS WEAK LIMITS 
OF A RISK WSERVE PROCESS 

KRZYSZTOF BURNECKI* ( W a o n ~ w )  -- . 

Abstract. Self-similar processes are closely connected with limit 
: 

theorems for identical and in general strongly dependent variables. 
Moreover, since they allow heavy-tailed distributions and provide an 
additiqnal "adjusting" parameter H, they appear to be interesting in 
the area of risk models. In this paper we prove that only self-similar 
processes with stationary increments appear naturally as weak limits 
of a risk reserve process, and conversely every finite mean H-self-simi- 
lar process with stationary increments for 0 < H < 1 can result as thc 
weak approximation. A lower bound for general self-similar processes 
with drift is also provided. 

1. INTRODUCTION 

The traditional approach in the collective risk theory is to consider a mod- 
el of the risk business of an insurance company, and to study the probability 
of ruin, i.e. the probability that the risk business ever will be below some 
specific (negative) value. The classical risk process R is defined by 

where u 2 0 denotes the initial capital, c is a positive real constant, N = 
(N(t j ) , , ,  is a point process independent of (Y,), and (Y,),"=, forms asequence 
of i.i.d. random variables, having the common distribution function F, with 
F(0) = 0, mean value p, and variance a'. N(t) is to be interpreted as the 
number of claims on the company during the interval (0, t ] .  At each point of 
N the company has to pay out a stochastic amount of money, and the com- 
pany receives (deterministically) c units of money per unit time. The constant 
c is called the premium income rate. 

However, in reality, claims are mostly modelled by heavy-tailed distribu- 
tions like e.g. Pareto. Moreover, the independence of Y,s seems unrealistic 
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since a correlation between claims is being observed. Therefore, in our ap- 
proach we do not restrict ourselves to independent Yks with EY? < a. We 
merely assume that E I Y,I < m .  

Already in 1940 Hadwiger compared a discrete-time risk process with 
diffusion. This can be viewed, though theoretically not comparable with mod- 
ern approach, as the first treatment of diffusion approximations in the risk 
theory. A more modern version, based on weak convergence, is due to Iglehart 
[6]. The idea is to let the number of claims grow in a unit time interval and to 
make the claim sizes smaller in such a way that the risk pro-cess converges 
weaklyko a diffusion. We shall consider weak approximations where the idea is 
to approximate the risk process with a self-similar process with stationary 
increments and drift. While the classical theory of diffusion approximation 
requires either short-tailed or independent claims, these assumptions can be 
dropped in our approach. 

1.1. Preliminaries. Stochastic processes X = (X (t)),,, in this paper are al- 
ways assumed to be defined for t E T, where T = [0, co) or R. The process X 
is said to be degenerate if X ( t )  = X ( 0 )  a.s. for any t E 7; and non-degenerate 
otherwise. By (X(r)) (Y(t)) we mean the equality of all finite-dimensional 
distributions. Sometimes we simply write X (t)  A Y(t). B y  X ,  ( t )  &- Y(t)  we also 
mean the convergence of all finite-dimensional distributions as n + a. Sim- , 

ilarly, X ,  5 X denotes the convergence in distribution of random variables 
X ,  to X .  

An integer-valued stochastic process (N( t ) ) tBO with N(0)  = 0 a.s., N( t )  < co 
for each t < co and non-decreasing realizations is called a point process (see 
Grandell [ 5 ] ) .  

1.2. Weak convergence of stochastic processes. Let D = D [0, m) be- the 
space of cadlag functions, i.e. all real-valued functions that are right-continuous 
and have left-hand limits, on [O, m ) .  Endowed with the Skorokhod J ,  topolo- 

- gy, D is a Polish space, i.e. separable and metrizable with a complete metric. 
A stochastic process X = (X (t)),,, is said to be in D if all its_ realizations are 
in D. A sequence (X(")),,, of stochastic processes in D is said to converge weakly in 

'- the Skorokhod J ,  topology to a stochastic process X if for every bounded 
continuous functional f on D it follows that 

lim Ef (X("') = Ef ( X ) .  
n--' m 

In this case one writes X(") X .  Weak convergence of X(") to X implies, for 
example, convergence of the finite-dimensional distributions provided that the 
limit process X is continuous in probability, and that 

inf X(") ( t )  5 inf X (t)  for any to < co 
0 6 t < f o  OCtCto  
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The latter stems from the fact that the function i: D 4 [-my cc] defined by 
i(z) = i&~,,,,z(s) is continuous on D for any Z E D  and any to < m. A se- 
quence (X(")),,, of stochastic processes in D is said to converge in probability in 
the Skorokhod J ,  topology to a stochastic process X if for all E > 0 

lim P [d (X(") ,  X) 2 E] = 0, 
n-rq 

where d denotes the Skorokhod 3, metric. We write Xtn) 5 X. Iff ( - )  is a deter- 
ministic funstion, then .X'n) < f if and only if X[") * f .  . . . 

Hereaftar we shall only consider processes in D and continuous in proba- 
bility. -- 

1.3. Self-similar processes. A process X = (X (t)),, , is self-similar (s.s.) (see 
Lamperti (71) if for some H > 0 

(2) X(ct)gcHX(t)  for every c > 0 .  

We call this X an H-seEf-similar (s.s.1 process. The parameter H is called the 
idex  or the exponent of the selJlsimilauity. X is said to be trivial if 
X (t) = tn X (1) a.e., t 2 0. The process X = (X is said to have stationary 
increments (s.i.) if for any b > 0 

(x (t + b)  - X (b)) (X (t) - X (0)). 

We call X simply an s.i. process. 

1.4. Model. Let us specify in detail the assumptions in our model. We 
assume that the claims occur at jumps of a point process (~(t)),,, .  While most 
work in the collective risk theory has assumed that N(t) is a Poisson process, 
this restrictive assumption plays no role in our analysis. The successive claims 
Y ,  are supposed to form a sequence of identically distributed random variables, 
strongly dependent in general, with EY, = p > 0. Furthermore, we assume 
that the initial risk reserve of the company is u > 0 and that the policyholders 
pay a gross risk premium of c > 0 per unit time. Thus the risk processis of the 
form (1). 

One of the key problems of the collective risk theory concerns calculating 
the ruin probability, i.e. the probability that the risk process becomes negative. 
The ruin probability @(u,  T) in finite time (or within finite horizon) of a com- 
pany facing the risk process (1) is given by 

@(u, T ) = P ( R ( t ) < O  for some t d  T ) ,  O <  T <  my u20. 

Consequently, the ruin probability @(t) in infinite time can be defined as 
@ (u) = @ (u, a). We also assume that the net profit condition lim,, , (ER (t))/t > 0 
holds. 
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2. GENERAL RESULTS 

The  main aim o f  this section i s  to show the following 

STATEMENT 2.1. The only processes that emerge in u "natural way" as weak 
approximations of the risk reserve process are H-s.s. processes with stationary 
increments with 0 < H < 1. Conuersely, every H-s.s. s.i. process X with 
E X ( t )  = 0 ,  in D and with 0 < H < 1, can serve as the weak approximation of 
some risk process. 

In-_order t o  justify this statement first we need the following-proposition: 

P R ~ P ~ I T I O N  2.1 (Lamperti [q). Let (op=l be a stationary sequence of 
A R-valued random variables with the partial sum process Y( t )  = z,=, ik for t 3 0. 

If 

where reals (A(A))A30 with A(R) > 0 ,  limA,, A(1) = a, and X(1) # 0 with posi- 
tive probability, then there is an H > 0 such that 

where L is a slowly varying function and X is an H-S.S. s.i. process. Conversely, all 
H-S.S. s.i. processes X with H > 0 can be obtained in this way. 

R e m a r k .  For the last statement take A(1) = iH and Ck = X ( k ) - X  (k  - 1 )  
for  EN. 

We have the following relationship between the moment condition and the 
parameter H o f  S.S. s.i, processes. Let X be a non-degenerate H-S.S. s.i. process, 
H > 0. In this case, i f  E]X( t ) l  < a, then H < I. Moreover, if 0 < H < 1, then 
E IX (t)l = 0 (cf. Maejima [8]), and i f  H = I, we get X ( t )  = t X  (1) as., i.e. X is 
trivial (see Vervaat [ I l l ) .  

Combining that and the fact that weak convergence in the Skorokhod 
topology implies convergence with respect to finite-dimensional distributions 

.we may assert the following . - 

COROLLARY 2.1. Let be a stationary sequence with common distri- 
bution function F and mean zero such that 

for some reals (4(n)),30, #J (n) > 0 ,  limn,, 4 (n)  = a, and X is a non-degenerate 
stochastic process. Then for some 0 < H < 1 the process X is H-s.s. s.i., and 4 
is of the form #J(n)  = nH L(n )  for L being a slowly varying function. Converse- 
ly, every H-s.~.  s.i. process X in D, of the mean E X ( t )  = 0, can be obtained 
this way. 
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Proof.  The last part of the assertion follows from the fact that the con- 
vergence in the converse part of Proposition 2.1 is in fact weak provided that 
X is in D. 

Wow we can state the theorem that yields our statement. 

THEOREM 2.1. Let (Y,),,, be a stationary sequence with common distribution 
function F and mean p > 0. Assume that 

4 

for some non-degenerate process X and reals (# (n)),> o, limn4 4 (n) = m. Fur- 
thermore, let (N(nf),,  be a sequence of point processes such that 

and 

N(n) ( t)  - Ant 

# ln) 

in probubility in the Skorokhod topology for some positive constant 1. 

and 

(i) there exists an 0 < H ,< 1 such that X is H-s.s., s.i., 4 is of the form 
4 (n) = nH L(n)  for L being a slowly varying function, and 

$i) it follows that 
. - 

in the Skorokhod topology as n -, co. 
Conversely, every H-s.s. s.i. process X in D, with EX ( t )  = 0 and 0 < H < 1, 

can be obtained by (7). 

Proof.  Part (i) of the assertion is obvious by Corollary 2.1. In order to 
prove part (ii) let us recall the following Whitt theorem on random time change 
(for details see Whitt [12]). Let (Z,),,, let Z be processes in D [0, m) and 
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suppose that Z,  * Z .  Let (N,),, be a sequence of processes with non- 
decreasing sample paths starting from 0 such that N,* AZ, I > 0. For each 
n E N, 2, and N, are assumed to be defined on the same probability space. Then 

2, (N.) = Z (RI) . 
Now let us rewrite the process Qtn)(t) in the following form: 

From assumptions (31, (5) and the Whitt theorem (8) we obtain 

Since 

N(") ( t)  - Ant 

converges to u + ct in probability in the Skorokhod topology, the proof of part 
(ii) is complete. 

By Corollary 2.1, setting Y ,  = X ( k )  - X (k  - 1) + p, k = 1, 2, . . . , where 
p > 0, in order to conclude the converse part we merely have to construct 
a sequence (NLn))nEN that fulfills the conditions (4) and (5). To this end, set 
N ( t )  = [nt] and q5 (n) = nR. This completes the proof. ,a 

Remarks.  1. The condition (4) implies (5) unless H = 1. 
2. H = 1 corresponds to the case when X is trivial. 

. 3. In order to construct a "more realistic" sequence (N'"'),,, for $ < H < 1 
one can consider the case where the occurrence of the claims is described by 
a renewal process N: 

. - 
n 

N ( t ) - m a x i n :  G g t ] .  
k = l  

The interoccurrence times (T,),, are assumed to be independent, positive ran- 
dom variables with mean l / A  and variance 0'. We define 

N(") ( t)  = N (nt) . 
Then for < H < 1 and 4 (n) = nH the conditions (4) and (5) are fulfilled (see 
Furrer et al. [4]). 

4. We could omit the point (10) and use just the previous relation (9) with 
slightly modified assumptions in order to state a more general result on the 



Self-similar orocesses in risk thenrv 267 

weak convergence to s.s. s.i. processes. That is, it is enough to assume instead of 
(6) the condition limn,, c'") = c and apply (5). Then, if we do not restrict & to 
variables with the finite mean, the resulting N-s.s. s.i. process X may be quite 
general with infinite mean. Nevertheless, as a consequence, this would lead us 
to an artificial colIective risk model interpretation of the final process Q (cf. 
Section 3). Thus we do not intend to generalize this theorem. 

3. APPROXIMATION OF RUIN PROBABILITY 

.. . . . - 
Collecti* risk theory has paid considerable attention to the ruin-fun6 

tional in infmite and finite time. The weak convergence of Q{n) to Q implies, for 
example, 

inf Q'") ( t )  5 inf Q ( t )  for any to < co, 
0 d r Q r o  O d t d t o  

and thus 

(1 1) l imp{  inf ~ ( " ' ( t )  KO)= P C  inf Q ( t ) c O )  
n-+m O d t S t o  O d t < t a  

inf Q-(t) = 0) = 0. 
P { o < t < t o  

Therefore, we may approximate the finite-time ruin probability of a risk 
process by the ruin probability in finite time of the corresponding weak ap- 
proximation if the condition (12) is satisfied. That condition is suggested by the 
author to be true for a wide class of S.S. s.i. processes and has already been 
known for the Brownian and LCvy motion. 

THEOREM 3.1. Consider a risk process R ( t )  = u + ct -z:i: Y,. Denote 
the corresponding Jinite-time ruin probability by Y ( u ,  T).  If the assumptions 
fiom Theorem 2.1 are satisfied for &, the sequence ~ { " ) ( t )  = N(nt),  # ( n )  = nH, 
0 < H < 1, P {info <, < ,, Q ( t )  = 0 )  = 0 and the relative safety - loading 
8 = c/(rZp) - 1 > 0, then 

inf (u + 8Aps - I" X ,  (s)) < 0). Y(u> TI -n+mp{o< < T  
.s. 

Proof.  For each  EN, we have 
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New Zssume that To = T/n,  OQ = (6Apn)/$(n) and ec, = u/+-(n) are con- 
stants, ile. we increase T and u with n, and decrease at the same time the safety 
loading 0 with n (as H < 1). This means that a small safety.loa&ng is compen- 
sated by a large initial capital. Then we obtain 

Applying Theorem 2.1 and (11) we obtain 

inf (uo+Bos-lHXH(s))<O). 

By self-similarity this completes the proof. 

4. RUIN PROBABILITIES 
FOR GENERAL SELF-SIMILAR PROCESSES 

In the previous sections we showed that the process Q defined in (7) can be 
looked as an approximation of a risk process. Our aim in this section is to 

. investigate the probability that the process Q reaches the level 0 before time t. 
In the Brownian case the probability can be calculated explicitly (see for in- 
stance Asmussen [I]): 

.- . - r ~ ) + ~ ~ ~ ( - ? )  @(%), sup (3L1/' B(s)- cs) > u]  = 3 - 
P { o C . L t  

where @ is the standard normal distribution and 8 = 1 -@. Furrer et al. 
[4] and Michna [9] provide upper bounds where X,(t) is a standard sym- 
metric a-stable Ltvy motion Z ,  and a standard fractional Brownian mo- 
tion B,, respectively. Furrer et al. [4] prove that for positive numbers u, c 
and A 

sup (A1/" 2, (s) - cs) > u] < 2G 
P { O L s 6 1  



Self-similm processes in risk theory 269 

where G = 1 - G and G denotes the cumulative distribution function of a stan- 
dard Sols variable. Michna [9] shows that for $ < H < 1 

P {  sup (AH3,(s)-cs)> tc) d 5 
04~41 

Now let us state a theorem which yields a lower bound for the ruin 
probability of the process Q for an arbitrary self-similar process XH with 
H > 0. 

T m ~ m  4.1. Let ( ~ , ( t ) ) , ~ ~  be an arbitrary self-similar process with the 
exponent H > b. I f0 < H < 1 and t is mficiently large, namely (uH)/ct (1-- H) < 1 ,  
thm 

(13) sup (AH XH (s) - cx) > u )  2 G 
p{oC#Ct 

otherwise 

where G = 1-G and G denotes the distribution function of X,(I). 

Proof.  Since the process X ,  is H-s.s., we have 

P { sup (AH X ,  (s) - cs) > u )  = P f sup (aH t" X H  (s) - cts) > 26) .  
DCs4t OCsCL 

Furthermore, it is obvious that 

P {  sup ( A E t H x H ( ~ ) - ~ t ~ )  > U) 2 P ( A H t a X H ( ~ ) - e t t  > u} 
OCsCl 

for all z E (0, 11. 
Eventually, applying one more time the definition of self-simila~ity we 

obtain 

u + ctz 
P {  sup ( A H x H ( ~ ) - c s )  > U) 2 p 

04sSt 

for all TE(O,  11, where G stands for the distribution function of X,( l ) .  
In order to find the best possible lower bound for the ruin probability in 

finite time we are to find minimum of the function f (T) = (u + c t z ) / ( l t ~ ) ~  on the 
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interval (0, 11. To this end we calculate the derivative of the expression: 
( u . ~ - ~ + c t z l - ~ )  and find out that it is equal to 0 for 

Hence, if zo < 1, then the minimum of the function f on (0, I] is 

otherwise -- 

u + c t  
f ( 1 )  = - (At)" ' 

This proves the theorem. rn 

Remark. The condition 0 < H < 1 corresponds to the case when XH ( t )  is 
non-trivial, has stationary increments' and finite first moment for each t .  

Since the lower bound (13) does not depend explicitly on t, it can serve as 
well as a bound for the ruin probability for Q in infinite time. Furthermore, the 
bound defined in (14) tends to G ( c / l )  when H = 1 and to GfO) when H > 1 as 
t + oo. Therefore, we may claim the following 

COROLLARY 4.1. Let ( X ,  (t)h> be an arbitrary self-similar process with the 
exponent H > 0. Then we have 

where G = 1- G and G denotes the distribution function of -XH(l). 

Remarks.  1. The lower bound (16) has already been obiaiied by Nor- 
ros [ l o ]  for a special case when X is an FBM (H < I), in the storage model 
setting. 

2. Dufield and O'Connell 131 using the result from Norros [lo] showed 
that the bound is in fact accurate in the logarithmic sense (the case when X is 
an FBM). 

Considering specific cases when X, is a standard Gaussian or a standard 
SaS process, and letting the initial risk reserve u become large we obtain the 
following results: 
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COROLLARY 4.2. If XH is Gaussian with XB(l) being a standard normal 
variable and 0 < H < 1,  then 

830 
P (sup (Px, (s)-cs) > u )  2 exp 

P r o  o f. Recall the elementary relation 

l - @ ( x ) - ~ - ~ f ( x ) - e x p ( - x ~ / 2 )  for X - + m ,  

where # and f stand for a distribution and density function of the standard 
normal distribution, respectively. -. 

C O R O L L ~ Y  4.3. If XH is standard SorS and 0 < H < 1, then-- 

(1;HT1-" (AT 
P {sup (AH XH (s) - CS) > U) 2 - 

s > O  

Pro  of. This stems from the fact that the tail probabilities of a standard 
SaS distribution behave like C, x-", where C, is constant. 

The construction of the lower bound (13) in the proof of Theorem 4.1 
suggests that the bound should be quite a good estimate. For instance, the 
bound in Corollary 4.2 for H = 4 gives in fact an exact result for the Brownian 
motion. Michna f9] shows that the lower bound (14) yields a good approx- 
imation of the ruin probability for the fractional Brownian motion, when u 
is large. 
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