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LINEAR ESTIMATORS OF THE MEAN VECTOR
IN LINEAR MODELS: PROBLEM OF ADMISSIBILITY:

BY

WITOLD KLONECKI (WROCLAW)

Abstract. In this paper we consider linear estimators in linear
models with a general covariance structure. Necessary conditions for
admissibility of the linear estimators with quadratic loss function are
given and they are shown to be sufficient when only positive definite
covariance matrices are admitted. In the case where the set of
admitted covariance matrices coincides with all nonnegative definite
matrices, it is shown that LY is admissible for the expected value EY
if and only if the eigenvalues of the matrix L are in the closed
interval [0, 1].

1. Introduction. Let Y be an n-variate random vector with expectation
0 = EY and covariance matrix V= Cov Y. The parameters are 6,7V), and
the parameter space, denoted by £, is assumed to be of the form
A"x ¥, where ¥~ is a closed convex cone of nonnegative definite (n.n.d.,
for short) matrices of order nxn. The paper is concerned with the problem
of characterization of admissible linear estimators of # with the squared
distance as loss when different restrictions are imposed on ¥

By a linear estimator of 6 we understand a function LY, where L is
an nxn real matrix of constants. Denote by R the expected squared
distance,.i.e. let

R, V|L) = E[(LY-0)(LY-0)], 6,V)e?.

As usual, MY is said to be as good as LY if R, VIM) < R(0, V|L)
throughout #, and LY is better than- MY if, in addition, strict inequality
holds for some point in 2. The estimator LY is called admissible for 6
within model with parameéter space 2 among linear estimators (admissible
within model 2, for short) if no other linear estimator is better than LY.
Finally, LY is called locally best at a point in 2 if no other 11near esti-
mator is better at this point than LY. -
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A characterization of admissible linear estimators within the model treated
here has been given in a particular case by Cohen in [1]. Cohen assumed
that ¥ is generated by the unit matrix and proved that LY is admissible
if and only if L is symmetric and the eigenvalues of L are in the closed
interval [0, 1]. His proof was based on the observation that MY, where
M = I—-[(I—-LY(I—L)]'?, I being the unit matrix, is better than LY when
L is asymmetric. Next Rao [9] has shown in his 1976 Wald lecture paper
that Cohen’s result may be extended to models in which ¥~ is generated
by a single positive definite (p.d., for short) matrix. He deduced this result
from Cohen’s theorem using a lemma given by Shinozaki in [10].

This paper is concerned with further generalizations of Cohen’s result.
For the model considered here we succeeded in establishing only necessary
conditions, ie. if LY is admissible within model #"x¥", then (i) the
eigenvalues of L are in [0,1] and (ii) the product LV is symmetric for
some nonzero matrix ¥V e¥". However, we have also shown that conditions
(1) and (ii) are sufficient if it is assumed in addition that ¥~ consists only
of p.d. matrices (except for the zero matrix) and, consequently, that LY
is admissible within model #"x 7~ if and only if LY is admissible within
model £"x ¥~ for some nonzero matrix Ve ¥". Here [ V] denotes the convex
cone generated by the matrix V. This latter result is not necessarily valid
if the condition that ¥~ consists of p.d. matrices is removed. It remains to
be true that if LY is admissible within model %" x [V], then' LY is admissible
within any model #" x ¥~ provided Ve ¥ . Finally, we show that condition (i)
mentioned above is necessary and sufl cient for admissibility in the case
where 7~ coincides with the family of all n.n.d. matrices. Some of the results
presented in this paper have already been announced in [3] and [4].

In our considerations we use a method developed first by Olsen et al.
[7] and then extended by La Motte in [6]. The essential tools in this
approach are Lemma 1.2 which states that, roughly speaking, each admissible

" estimator is locally best at some nonzero point in an “extended” parameter

space and Lemma 1.1 which gives a simple characterization of locally best
linear estimators. The details are as follows.

Let &,., denote the class of all nxn real matrices and let, for
A, Be %,.., the expression A ® B denote a linear operator on %,,, defined
for each Ce ,,, by (4 ®B)C ACB'. Following La Motte [6] define for
the model # a subset I of F,, X Loxn 88 .

T = {(6¢,V): (9, V)e 2},

and let [3' ] denote the smallest closed convex cone in Froxn X FLuxn CON-
taining 7. Now for each Le¥,,, let R(-|L): [F]— # be a function
defined for each (@, V)e[J] by

(L.1) R(@®,V|L) = tr [{I—L)’(I~—L)¢'+I_5LV],
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where tr stands for trace. Clearly, R(6¢, V|L) = R(0, V|L) for all (8, V)e 2.
In the sequel we shall also treat (1.1) for fixed (@, V) as a function of
L defined on &,,,.

Now let 4 be a nonempty subspace of #" and let IT be the orthogonal
projection on J# such that the range #(II) of I coincides with %'
Finally, let - '

= {L: R(L—Ly) = A}, where R(Lo) = H-L.
The estimator LY is said to be locally best at (®,V)e[Z] in the class
& if R(®, V|L) < R(®, V|M) for all Me &.
LEMMA 1.1. Let Le ¥ and let (®,V)e[T]. Then the estimator LY is
locally best at (D, V) in the class & if and only if
(12) o L(@+V)I = &II.

This result has predecessors in [2], [3], [6], and [8]. For the later use we
shall now specialize matrices L, and II to

1. 0\ ' 70 0
- (1.3) Ly = and II = ,
0 0 \o I_,

where the subscripts r and n—r denote the orders of the unit matrices.
Clearly, # is now the set of all matrices of the form

(Ir L12>
0 L/
where L;, and L,, may be any matrices of orders rx(n—r) and (n—r)x

x (n—r), respectively. Partitioning correspondingly @ and ¥, we can easily
verify that (1.2) takes the form

(4 Li3(@23+V33) = —Viz, Ly (®y +>sz)‘ = ®;,.

Lemma 1.2 below will be formulated under the additional assumption
(1.5) (Lo—D(I—H)®I = 0 '
for all @ =

This- condltlon is clearly fulfilled for =1 Tt also holds for the
above-specified matrices L, and II. Note that under (1 5) formula (1.2) becomes

LI+ Vi) = N®I1.
Now let
- Ty = {IeN, VII): (8, V)e [T}
“and : v '
& = {(ToM,VI): & > 0,V = 0,tr (ISP +V3II) = 1}.
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Moreover, denote by #~ the convex hull of 9 ; n&. Note that 0¢ %"

LEMMA 1.2. Let W be a compact set. If LY is admissible within model
P and if Le %, then there exists a point (D, V) with (II®I, VII) in W
such that the matrix L minimizes R(®, V| ) in the class L.

In the case where IT = I, the set # is compact, and then Lemma 1.2

reduces to La Motte’s result in [6]. For II specified in (1.3), the set # is

compact when- ¥~ = [V], but it is not compact when ¥~ coincides with the
set of all nn.d. matrices. .

For convenience of the reader the proofs of Lemmas 1.1 and 1.2 are
given in the Appendix.
We end this section with two corollaries which will be useful in the
sequel. ‘

A =1 and if L satisfies (14) at a nonzero point (D53, Vi3, V23), then Vi,
cannot be -the zero matrix. -

Proof. Suppose to the contrary that V,, = 0. Then V;, = 0 and 1.4)

-reduces to L,,®,, =0,L,,P,, = ¢,,. But in this case @,, # 0 and,

therefore, there exists a nonzero vector Qe #" " such that L,,Q = Q and
L,, 0 = 0, which contradicts the assumption that L has an r-fold degen-
eracy for A = 1. The desired result that V,, # O is hence established.
Under the assumption that I = I we deduce next the following resuit:
CoroLLARY 1.2. Let L and M be (nxn)matrices. If LQ = AQ for
0<A<1,if R(®,VIM)S R(D,V|L) for V= (1-1)QQ’, and & = AQQ’,
then MQ = 0. -
Proof. Since ?+V = QQ', we have L(P+V) = LQQ = &. Hence, by
Lemma 1.1, L minimizes R(®, V|-). From the second assumption we then
obtain R(@, V|M) = R(®, V|L) so that M(®+V) = &. Now &+V = QQ

applies once more to show that MQ = AQ.

2. Necessary and sufficient conditions for admissibility. Rao has shown in
[9] that LY is admissible within model #"x[V], where V is any p.d.
matrix, if and only if the eigenvalues of L are in [0, 1] and LV is symmetric.
For the more general model #"x ¥ treated in this paper, Theorem 2.1
below gives necessary conditions for admissibility which, for the model
considered by Rao, are equivalent to Rao’s conditions. As will be demon-
strated later, they are not sufficient for the general model.

THEOREM 2.1. If LY is admissible within model #"x V", then

(i) the -eigenvalues of L are in [0,1],

(ii) there exists a nonzero matrix Ve such that LV is symmetric.

Proof If LY is admissible, then Lemma 1.2 with 4 = %" guarantees
the existence of a nonzero point (@, V)e [Z ] such that

2.1) . | L(@®+V) = o.

CorOLLARY 1.1. If Le % has an r-fold degeneracy for the eigenvalue
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Since the left-hand side. of (2.1) is symmetric, the matrix L has
r = rank (¢ + V) independent real eigenvectors, say Py, ..., P,, such that

r
®+V=Y t,PP
i=1

where 1,,...,7, are some positive constants. Suppose that P,,..., P, cor-
respond to the eigenvalues A,, ..., 4, of L, respectively. Then

r

(22) & =L(P+V)= __Z 7,4, P, P;
so that o )
(23) V= (0+V)—® = Z T; (1 A)P.P;.

Since @ and V are n.nd., we infer from (2.2) that 4; > 0 and from (2.3)
that 1—A; = 0. Consequently, 0 < ;< 1 for i =1,

To prove that the remaining eigenvalues of L are in [0, 1] we rnay‘

assume without loss of generality that

L, L
L= ( 11 12)
0 Ly

and that ,,..., A, are the eigenvalues of the (rxr)-matrix L,,. By Shino-
zaki’s lemma mentioned in Section 1, the estimator L,, Z is then admissible
for EZ, where Z is a random variable with the parameter space %" " x
x{UVU":Ve?},U=(0 I,_,). As before, we can show that L,, has at
least one eigenvalue in [0, 1] which evidently is also an eigenvalue of L.
If necessary, we may continue in this way to conclude finally that all the
eigenvalues of L are in [0, 1], which completes the proof of (i).

Assertion (ii) is evident in view of (2.1) when V# 0. If (2.1) reduces to
L® = &, then the matrix L has 1 as its eigenvalue. Suppose that it has
an- r-fold degeneracy for A = 1. We may then assume without loss of
generality that L is as above but L,; = I,. ‘

Let # be defined as in Section 1 with IT specified in (1.3). We
distinguish now two cases.

(1) If # is compact, then Lemma 1.2 with L, as in (1.3) and Corollary 1.1
guarantee the existence (see (1.4)) of a point (@, V) in [J] such that

(24 Ly (®y3+ Vay) = — Wy,
(2.5) Ly (@33 V22) = D3,,
where V,, # 0.

We shall now show that LV is symmetric. For this purpose we wr1te_.

A A
iy ( " )
o ,A21 Azz
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where
Ay = Vii+LiaVis, Ay, =‘V12+L12 Vaz,s
A£1 = Ly, Vs, Azs = Ly, V35
Now it follows from (2.4) and (2.5) that A,, and A,;, respectively, are
symmetric. Moreover, by (2.4) and (2.5), we have

Ay = =L, P,;, = —L12(¢22+V22)L 22 = V12L22 = Aj,-
- This shows that LV .is symmetric.

(2) If # is not compact, then there exists a sequence (q)(") VMelT],
n=1,2,.., such that 4, = (I, V®T)e# and A, > A, as h - 0,
but A,¢#". Since no subsequence of {PV™P'} with P = (I, 0) may
converge to an n.n.d. matrix, the elements of {PV®™ P’} are not bounded.
As a consequence, there exists a subsequence {n;} such that

{ 1("_) V("")}—r VeR(I'®I) as i » ©, V¢0,
tr V'

where I' = P'P. It is now obvious that ¥V e¥ and that LV is symmetric
since ¥ is closed and LI' = I'. This completes the proof of Theorem 2.1.

The next theorem may be considered as an extension of Cohen’s result
to n.n.d. matrices.

As before, let Y denote a random vector with the parameter space
P =R"xV,let P=(I, 0),and let I' = P'P. Assume that ¥ < Z('QT).
Moreover, let Z be a random vector with the parameter space & = - R X
x{PVP':Ve¥}.

THEOREM 2.2. The estlmator LY ‘is admissible within model # if and
only if

(i) #(L~1) < #(I'(L-DT), N

(ii) PLP'Z is admissible within model #.

Proof. Partitioning L as

' L L
L= ( 1 12)5 Llleyrxr

L21, L,,
we note easily that L fulfills (i) if and only if
(2 6) Ly, = 0, Lzz = I ‘ le = (I —L11)H,

where H may be .any [rx(n— r)]-matnx

If LY is admissible within £, then L must necessarlly fulfill (2.6).
Otherwise, an estimator with a matrix obtained by replacing in L, respec-
tively, L,,, L,, and L,, by O, I,_, and (I,—L,)H with H selected to meet
the condition

(I,—Ly1) Ly = (I,—Ly,) Ly, (I, —Lyy)H
would be better than LY. Thus (i) must hold.




Admissibility of linear estimators 173

Now suppose to the contrary that M,, Z is better than L,, Z = PLP'Z
so that

2.7) . R(PO,PVP|My;) < R(PO, PVP'|Ly,)
for all (8, V)e 2 with strict inequality for at least one point in &. Putting

o (Mu (I—MH)H)
0 1

and applymg (2.7) yields that MY is as good as LY. Since LY is admissible
within model 2, we may hence conclude that MY and LY are equivalent.
But this leads to equality in (2.7), which is a contradiction.

To prove the sufficiency suppose to the contrary that MY is better
than LY so that

(2.8) R(0, VM) < R(6, V|L)

for all (8, V)e? with strict inequality for at least onme point in 2.
Partitioning M similarly as L, we must have M,, = 0, M,;, =I,_, and
My, = (I,—M,,)K, where K is an [rx (n—r)]-matrix. Applying assumption
(i) and (2.8) it may easily be checked that the risk functions of M Z
and L,, Z are identical within model #. Then (2.8) implies that for all
0, Ve?

‘ Cii Coia).
R, VIL)~R(O,VIM) = ¢| 6>0,
- 12 Ca2
where _ _
(29) Cy = 0, Cyp= (I"Lu)'(I—Lu)H‘“(I_Ml1)’(I—M11)K =0,

while
Cy, =H(I- Lu)’(l Ly )H—K'(I-M,,)y (I— Mu)K

Applying (2.9) we can show that C,, = 0 so that < may be replaced
by = in (2.8). But this is a contradiction and the proof is complete.

If # = #"x[V], where V is any n.n.d. matrix, then using some notation
introduced by Rao [9] and Zmyslony [11] we may formulate Theorem 22
as follows:

" COROLLARY 2.1. The estimator LY is admissible within model #"x[V]
if and only if L satisfies the following conditions: '

(i) LV is symmetric,

(i) Z2(L—-1I) < #(L-DV),

@) LVLE < LV.

It may be worth-while adding that this corollary is derived directly from
Lemma 1.2 without making any reference to Cohen’s theorem mentioned
in Section 1.
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Next we establish a uniqueness result for admissible estimators, which
will be used in the proofs of the last three theorems.

Iemma 2.1. If LY is admissible within model with any parameter space
P and if MY is another estimator with the same risk functwn ie.
R(0,VIM) = R(0,V|L) for all (8,V)YeP, then M = L.

Proof. As known, the risk function R(6, V|L) as defined in Section 1
is a convex function of L for all (8, V)e 2, whereas it is a strict convex
function of L when V is p.d. Thus, if there exists a p.d. matrix in ¥,

the assertion is obvious. Otherwise, we may assume without loss of gen-
erality that

' I, 0\ '
vV c AT @), where1“=(0 0),0<r<n'.

Then, -by part (i) of Theorem 2.2, M,, = L,y =0, M,, = L,, =1 and
there exist matrices K and H such that - M,, = (I —M,;))K and
Ly, = (I~Ly)H.

In turn, part (i) of Theorem 22 together with the assumptxon that
MY and LY have the same risk function imply then that M,, = L,,.
Using this fact and once more the assumption that LY and MY have the
same risk function, we obtain (/—L,,)K—(I—L;)H = 0, whence M = L,
which completes the proof.

Theorem 2.3 below gives a condition under which the necessary conditions
appearing in Theorem 2.1 are also sufficient. It is more general than Rao’s
theorem mentioned at the beginning of this section.

THEOREM 23. If ¥ consists only of p.d. matrices (except for the zero
matrix), then LY is admissible within model P = R"x¥" if and only if all
eigenvalues of L are in [0,1] and LV is symmetric for some nonzero matrix

- Vinv.

Proof. The necessity has already been established in Theorem 2.1. To
show the sufficiency suppose that MY is as good as LY and that LV,
where ¥, is a p.d. matrix in ¥, is symmetric. Then, by Corollary 2.1, the
estimator LY is admissible within model %" x [V,]. Consequently, the risk
functions of MY and LY are identical for all (0, V,)e & so that M = L by
Lemma 2.1. This proves that LY is admissible.

The assertion of Theorem 2.3 may be rephrased as follows:

The estimator LY is admissible within model R"x ¥~ if and only if there
exists a nonzero matrix Ve¥" such that LY is admissible within model

A" x[V].

The following example shows that this corollary may not hold when ¥~
contains singular matrices.
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Example. Let Y be a random vector with the parameter space #£%x7,
where 7" is generated by the unit matrix and by

6 )

From Lemma 2.1 it then follows that the estimator LY, where

(12 1
L“(O 1/2)’

is admissible. In fact, if MY is as good as LY, then M must be of the form

(1/2 m)
0 n

by Corollary 1.2, and, moreover, M must satisfy (1.2) with

0 0 16 4 -
H=(0 1), 115=(4 1), and V=1,

since L satisfies (1.2) with the above-specified matrices I, @, and V. This
leads to m = 1 and n = 1/2 so that M = L. Hence LY is admissible.

If there existed a nonzero matrix ¥V e¥ such that LY were admissible
within model #2 x[V], the matrix LV would be symmetric by Theorem 2.1.

Now, since
L(I 0) _ (1/2 a )
0 « 0 o2

LV is symmetric if and only if

2 0
V= )
(0 0>

The matrix L, however, does not meet the conditions of Corollary 2.1
with V as above and t2 > 0. Hence LY is inadmissible within each model
#*x[V] when V ranges over all nonzero matrices in 7.

A further immediate consequence of Lemma 2.1 is the following result:

THEOREM 2.4. Each estimator admissible within model P, = A"x YV, is
also admissible within any model P, = R"x ¥V , if V', =¥ 5.

Proof. Let LY be admissible within model 2, and suppose to the
contrary that it is not admissible in model #,. Now, if MY is better than
LY within model 2,, it must be therefore as good as LY in £,. But LY
is admissible in #; so that M = L by Lemma 2.1, which is a contradiction.

We shall conclude the paper with a theorem referring to the case where
v coincides with the family 7', of all n.n.d. matrices. To this end let
Y,, n=1,2,..., be a random vector with the parameter space 2, = #"x 7.
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THEOREM 2.5. A necessary and sufficient condition for the estimator LY,
to be admissible for EY, within model 2, is that the eigenvalues of L are
in [0,1].

Proof. Clearly, the necessity of this theorem is ensured by Theorem 2.1.
Now suppose that the eigenvalues of the matrix L are in [0, 1]. Since we
may assume without loss of generality that L is an upper triangle matrix,
the sufficiency can be derived straightforward by induction over m from the

. following result:

The estimator MY,,, where

A M12>
M = ,
(o M,,

" is admissible for EY, within model 9' if Ael[0, 1] and if M,, Y, | is
" admissible for EY,_, within model #,,_,, m = 2,3,.

To prove this latter result suppose that NY, is as good as MY,. Then

necessarily
N = (/1 Nu)
0 N,

by Corollary 1.1. Partitioning correspondingly .

- (91> and V= (V1’1 I”lz)’
02 V'IZ V22
we find after some computations that for all (8, V)e2,,
0 < R(6, VI]M)—R(0, V|N) '
= R(0,, V35| M3;5)—R(0;, V25| Npg) +tr (M1, My, ~ N3 N1p) (0,034 V3p)+
+2(My; —Ny)[AV], —(1-2)6, 63].
Since ¢, and 0, may be arbitrary and since V;, is subject only to the

- condition Z(Vy,) < #(V,,), we have N,, = M,, and, therefore, the last

two terms on the right-hand side cancel. Consequently, N,, Y, _, is as good
as M,, Y,_,, which implies that N,, = M,,, since M,, Y, _, is admissible
within 2,,_,. Hence MY, is admissible for EY,, as asserted. This completes
the. proof of Theorem 2.5.

Appendix,

Proof of Lemma 1.1. Lemma 1.1 states that Lo+Z, I, where Z(, is-

an (n x n)-matrix, minimizes R(?,V|: ) in &, ie. that

R(®, VILo+ZoIl) = min R(®P, V|Lo+ZII)

ZeS pyn

if and only if
Al (Lo+Zo IT)(®+ V)T = &I1. -

R
i
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To show this it will be convenient to introduce the folléﬁviné hdtation:
S=0(@+V)lI and T= PI—-Ly(P+V)II.

With this notation we obtain Z(T") = #(S*), so that SS*T' = T
Using this fact, by straightforward computations we see that

" R(®,V|Lo+ZII) = tr (ZS—T)S* (ZS— Ty —tr TS* T'+R(®, V|Lo).

Since Z(SZ'—T') < #(S*) and S* is n.n.d, it is now evident that the.
right-hand side reaches its minimum value with respect to Z if and only
if ZS = T, which in terms of the original notation reduces to (A.1).

Proof of Lemma 1.2. This lemma follows by arguments similar to
those used by Olsen et-al. [7] to show that an admissible unbiased
estimator -is locally best at some nonzero point and by La Motte [6] to
show that an admissible estimator is locally best at a nonzero point
in [7]. , '

Under assumption (1.5) it is sufficient to show that

0e W = {L(I®I - VI)—HSIT: (111, VI e #'}

because 0¢ #". Suppose to the contrary that 0¢ W. Since by assumption #~
is a compact convex set, the separating hyperplane theorem assures the.
existence of a matrix H such that

A2 tr {[L(I®H + VII)~ISI]H'} < 0

for all (II®I1,VII) in ¥. 7
Now define for each ye# a matrix M = L+yHII. Clearly, Me Z.
Taking into account (1.5) it can easily be verified that

7(®, V,7) = R(@, VIM)—R(®, VIL) = ay* +2by,

where a = tr HII(®+ V)IIH' and b = tr {[L(II®H + VI)—IIPII]H'}. Now
(A.2) gives a = a(®,V) > 0 and b = b(P, V) < 0 for all (IIPI1,VII)in ¥.
Then for an arbitrary but fixed pair of matrices (II®IT, VII)e W the
quadratic polynomial n(®, V,y) in y achieves its minimum value —b%/a
when y = g = —b/a. Since g, considered as a mapping from # to %, -
‘is continuous and strictly positive on the compact set #, there exists an
¢ > 0 such that g(II®II, VII) > ¢ for all (II®II, VIT)e W. Therefore

e~1n(@,V, ) < g~ (TSI, VI (S, V, g(ISI, VID)) < O
for all (JI®II, VII) in #. This 'proves that |
| R(®, V| L+yHI) < R(®,V|L) for all (&, V)e[T]

with strict inequality if (H@H , VII) is in #, contradicting the admissibility -
of LY. Hence the proof is complete.
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