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LINEAR ESTIMATORS OF THE MEAN VECTOR 
W LINEAR MODELS: PROBLEM OF ADMISSIBILITY 

Abstract. In this paper we consider linear estimators in linear 
models with a general covariance structure. Necessary conditions for 
admissibility of the linear estimators with quadratic loss function are 
given and they are shown to be sufficient when only positive definite 
covariance matrices are admitted. In the case where the set of 
admitted covariance matrices coincides with all nonnegative definite 
matrices, it  is shown that LYis admissible for the expected value EY 
if and only if the eigenvalues of the matrix L are in the closed 
interval [O, 11. 

1. Introduction. Let Y be an n-variate random vector with expectation 
8 = EY and covariance matrix V= Cov Y. The parameters are (8, V), and 
the parameter space, denoted by 9, is assumed to be of the form 
9" x .Y, where Y is a closed'convex cone of nonnegative ddnite (n.n.d., 
for short) matrices of order n x n. The paper is concerned with the problem 
of characterization of admissible linear estimators of 8 with the squared 
distance as loss when different restrictions are imposed on Y.  

By a linear es t imtor  of 0 we understand a function LY, where L is 
an n x n  real matrix of constants. Denote by R the expected squared 
distance, i.e. let 

R(%,VIL)=E[(LY-8)'(LY-011,  ( 8 , V ) ~ 9 .  

As usual, MY is said to be as good as LY if R(0, VM) < R(0, UL) 
throughout 9, and LY is better than M Y  if, in addition, strict inequaIity 
holds for some point in 9. The estimator LY is called admissible for 8 
within model with parameter space 9 among linear estimators (admissible 
within model 9, for short) Z no other linear estimator is better than LY. 
Finally, LY is called focally best at a point in 9 if no other linear esti- 
mator is better at this point than LY. 
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A characterization of admissible linear estimators within the model treated 
here has been given in a particular case by Cohen in [I]. Cohen assumed 
that f is generated by the unit matrix and proved that LY is admissible 
if and only if L is symmetric and the eigenvalues of L are in the closed 
interval [O, l ] .  His proof was based on the observation that MY, where 
M = I- [ ( I -  L)'(I - L)]lt2, I being the unit matrix, is better than LY when 
L is asymmetric. Next Rao [9] has shown in his 1976 Wald lecture paper 
that Cohen's result may be extended to models in which V is generated 
by a single positive definite (p.d., for short) matrix. He deduced this result 
from Cohen's theorem using a lemma given by Shinozski in [lo]. 

This paper is concerned with further generalizations of Cohen's result. 
For the model considered here we succeeded in establishing only necessary 
conditions, i.e. if L Y  is admissible within model WnxT, then (i) the 
eigenvalues of L are in [ O ,  11 and (ii) the product LV is symmetric for 
some nonzero matrix V E  Y.  However, we have also shown that conditions 
{i) and (ii) are sufficient if it is assumed in addition that Y consists only 
of p.d. matrices (except for the zero matrix) and, consequently, that LY 
is admissible within model 92" x V if and only if LY is admissible within 
model 9?" x V for some nonzero matrix V E  T. Here [u denotes the convex 
cone generated by the matrix V This latter result is not necessarily valid 
if the condition that Y consists of p.d. matrices is removed. It remains to 
be true that if LY is admissible within model 3" x [VJ, then LY is admissible 
within any model Bn x Y" provided VE V .  Finally, we show that condition (i) 
mentioned above is necessary and suil cient for admissibility in the case 
where V coincides with the family of all n.n.d. matrices. Some of the results 
presented in this paper have already been announced in [3] and [4]. 

In our considerations we use a method developed first by Olsen et al. 
[7] and then extended by La Motte in [6]. The essential tools in this 
approach are Lemma 1.2 which states that, roughly speaking, each admissible 
estimator is locally best at some nonzero point in an "extended" parameter 
space and Lemma 1.1 which gives a simple characterization of locally best 
linear estimators. The details are as follows. 

Let 9,,, denote the class of all n x n  real matrices and let, for 
A, BEY,,,,, the expression A @  B denote a linear operator on Y,,, ddned 
for each C e Y,,, by ( A  B) C = ACB'. Following La Motte [6]  define for 
the model 9 a subset F of Y,, , , x Y, , , as 

F = {(OW, V): (8, V ) E  P } ,  

and let [TI denote the smallest closed convex cone in Y,,, xYn,, con- 
taining 9. Now for each LE y,,,, let R (. IL): CJFJ -, 9 be a function 
defined for each (8, V) E [Y ] by 



169 Admissibility of linear estimators 

where tr stands for trace. Clearly, R(BB', V J  L) = R (0, V( L) for a11 ( 8 ,  V) E 9'. 
In the sequel we shall also treat (1.1) for fixed (a, V) as a function of 
L defined on Y,,,, . 

Now let X be a nonempty subspace of 9" and let I7 be the orthogonal 
projection on X such that the range .W(l7) of I7 coincides with X .  
Finally, let 

2 = { L : g [ E - E , ) c X ) ,  whereB(E , ) cXL.  

The estimator LY is said to be locally best at (a, V ) E  [F] in the class 
2 if R ( @ ,  V(L) S R ( @ ,  VIM) for all  ME^. 

I 
I 

LEMMA 1.1. Let L E Y  a d  kt (9,  V)E[F] .  Then the estimator LY is 
locally best at (9,  V) in the class 2' iJ and only 

(1.2) L ( @ + v ) ~  = ~ n .  
This result has predecessors in [2] ,  [3], [6], and [8]. For the later use we 

shall now speciaIize matrices Lo and L' to 

4-t 3 and n=(O 0 O I"-r ), 
where the subscripts r and rz-r denote the orders of the unit matrices. 
Clearly, 2' is now the set of all matrices of the form 

where L,,  and L,, may be any matrices of orders r  x(n-r)  and (n-r )  x 
x (n-r) ,  respectively. Partitioning correspondingly 8 and I.: we can easily 
verify that (1.2) takes the form 

Lemma 1.2 below will be formulated under the additional assumption 

for all @ 2 0. 
This condition is clearly fulfilled for Il = I. It also holds for the 

above-specified matrices Lo and 17. Note that under (1.5) formula (1.2) becomes 

L ( r r s n +  vn) = nm. 
Now let 

and 

d = ( ( m a ,  vn): @ 2 0,  v2 0, t r ( n @ n @ + v 2 ~ )  = 1 ) .  
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Moreover, denote by -18" the convex hull of Fn n G. Note that 0 4 W .  
LEMMA 1.2. Let W' be a compact set. If LLY is admissible within model 

B and if L E ~ ,  then there exists a point (@, V) with (n@lI, Vn) in W 
such that the matrix L minimizes R (@, VI . ) in the class X. 

In the case where 17 = I, the set % is compact, and then Lemma 1.2 
reduces to La Motte's result in [6 ] .  For il specified in (1.3), the set W is 
compact when V = [Vj, but it is not compact when V coincides with the 
set of all n.n.d. matrices. 

For convenience of the reader the proofs of Lemmas 1.1 and 1.2 are 
given in the Appendix. 

We end this section with two corollaries which will be useful in the 
sequel. 

COROLLARY 1.1. If L E 2 has an r-fold degeneracy for the eigenvalue 
R = 1 and if" L sntiqfies (1.4) at a nonzero point (QZ2, K 2 ,  b,), then VZ2 
cannot be the zero mtrix. 

Proof.  Suppose to the contrary that b2 = 0. Then 5, = 0 and (1.4) 
reduces to L,,@,, = 0, L,,@,, = QZ2. But in this case @,, f 0 and, 
therefore, there exists a nonzero vector Q E L P - ~  such that L,, Q = Q and 
L,, Q = 0, which contradicts the assumption that L has an r-fold degen- 
eracy for A = 1.  The desired result that &, # 0 is hence established. 

Under the assumption that ll = I we deduce next the following result: 
COROLLARY 1.2. Let L and M be (n x  n)-matrices. If LQ = ?RQ for 

0 G A < 1, if R(@,VIM)< R(@,VIL) for V =  (l-A)QQf, and @ = AQQ', 
then MQ = AQ. 

Proof. Since @ + V =  QQ', we have L(@+V) = LQQ' = 8 .  Hence, by 
Lemma 1.1, L minimizes R(8 ,  VI ) . From the second assumption we then 
obtain R(8,  VIM) = R(8 ,  VIL) so that M(@+V) = @. Now @+V= QQ' 
applies once more to show that MQ = AQ. 

2. Necessary and sufficient conditions for admissibility. Rao has shown in 
[9] that L Y  is admissible within model g n x  [VJ, where V is any p.d. 
matrix, if and only if the eigenvaIues of L are in [0, I] and L V  is symmetric. 
For the more general model 9 " x  V treated in this paper, Theorem 2.1 
below gives necessary conditions for admissibility which, for the model 
considered by Rao, are equivalent to Rao's conditions. As wiIl be demon- 
strated later, they are not sufficient for the genera1 model. 

THEOREM 2.1. If LY is admissible within model 9" x Y ,  then 
(i) the eigenvalues of L are in [0, 11, 
(ii) there exists a nonzero rnatrix V E Y  such that LV is symmetric. 
Proof. If LY is admissible, then Lemma 1.2 with X = 9 "  guarantees 

the existence of a nonzero point (@, V) E [F] such that 
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Since the left-hand side. of (2.1) is symmetric, the matrix L has 
r = rank (@+ V) independent real eigenvectors, say PI,  ..., P,, such that 

r 

where z,, ..., z, are some positive constants. Suppose that P I ,  ..., P, cor- 
respond to the eigenvalues A,, .. ., A, of L, respectively. Then 

so that 
r '  

Since 8 and V are n.n.d., we infer from (2.2) that Jli 2 0 and from (2.3) 
that 1 - li 2 0. Consequently, 0 G Ri 6 1 for i = 1, .. . , r . 

To prove that the remaining eigenvalues of L are in [O, 11 we may 
assume without loss of generality that 

and that A , ,  . .. , A, are the eigenvalues of the (r x +matrix L, ,  . By Shino- 
zaki's lemma mentioned in Section 1, the estimator Lz2 Z is then admissible 
for EZ, where Z is a random variable with the parameter space g n - ' x  
X { U V U ' : V E Y ) , U  = (0 I , - , ) .  AS before, we can show that L,, has at 
least one eigenvalue in LO, 11 which evidently is also an eigenvalue of L. 
If necessary, we may continue in this way to conclude finally that all the 
eigenvalues of L are in [O,l], which completes the proof of (i). 

Assertion (ii) is evident in view of (2.1) when V #  0. If (2.1) reduces to 
L@ = @, then the matrix L has 1 as its eigenvalue. Suppose that it has 
an r-fold degeneracy for A = 1. We may then assume without loss of 
generality that L is as above but L,,  = I,. 

Let W be defined as in Section 1 with ll specified in (1.3). We 
distinguish now two cases. 

(1) If W is compact, then Lemma 1.2 with Lo as in (1.3) and Corollary 1.1 
guarantee the existence (see (1.4)) of a point (8, V )  in [F] such that 

where VZ2 + 0. 
We shall now show that LV is symmetric. For this purpose we write. 



where 

A l l =  Vll+L12V;2r A12= K,2+L12V22' 

A i l  = L22 K'Z, A22 = Lzz b2. 
Now it follows from (2.4)' and (2.5) that A,, and A,,, respectively, are 

symmetric. Moreover, by (2.4) and (2.5), we have 

A12 = = -L12(@22+~/22)L122 = Vl2EZ2 = 4 1 .  

This shows that LV .is symmetric. 
(2) If W is not -compact, then there exists a sequence (@('I, V ( n ) ) ~  [TI ,  

n = 1,2 ,  ..., such that A, = (ff@(")I7, V ( " ) U ) E W  and A, A, as la + co, 
but A,$W. Since no subsequence of (PV(")P1) with P = (Ir 0) may 
converge to an n.n.d. matrix, the elements of (PV(')P1) are not bounded. 
As a consequence, there exists a subsequence (nj} such that 

v'"~) + v ~ g ( r @ r )  as i +  co, V # O ,  ' 1 
where r = P'P.  It is now obvious that V E Y  and that LV is symmetric 
since Y is closed and Lr = r.  Tlus completes the proof of Theorem 2.1. 

The next theorem may be considered as an extension of Cohen's result 
to n.n.d. matrices. 

As before, let Y denote a random vector with the parameter space 
B = 9 "  x V ,  let P = (I, O),  and let r = P'P. Assume that V c W (r@T). 
Moreover, let Z be a random vector with the parameter space = W'x 
x (PVP': V E V } .  
THEOREM 2.2. The estimator LY is admissible within model B if and 

only if 
(i) 9(L- I )  C= %'(r(~-I)r), 
(ii) PLP'Z is admissible within model 8. 
P r o  of. Partitioning L as 

we note easily that L fulfills (i) if and only if 
-. 

(2.6) L21 = 0, L22 = 1 R - r )  = (lr-L1l)H, 
where H may be any [r x (n-r)]-matrix. 

If LY is admissible within 9, then L must necessarily fulfill (2.6). 
Otherwise, an estimator with a matrix obtained by replacing in L, respec- 
tively, L,,, L,, and L,, by 0, In-, and (I,-Lll)H with H selected to meet 
the condition 

(1r-Ll1YL12 = (Ir-'11YL12 ( ~ ~ - L I I ) H  

would be better than LY. Thus (i) must hold. . 
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Now suppose to the contrary that MI, Z is better than L,, Z = PLP'Z 
so that 

(2.7) R(PB, PVP'(Ml1) 6 R (PB, PVP'(Lll) 

for all (8,  W E  9 with strict inequality for at least one point in 9'. Putting 

and applying (2.7) yields that MY is as good as LY. Since LY is admissible 
within model P, we may- hence conclude that MY and LY are equivalent. 
But this leads to equality in (2.7), which is a contradiction. 

To prove the sufficiency suppose to the contrary that MY is better 
than LY so that 

for all (6, V) EP with strict inequality for at least one point in .Y. 
Partitioning M similarly as L,  we must have M,, = 0, M,, = In-, and 
M , ,  = (I ,-  M , , ) K ,  where K is an [rx(n-r)] -matr ix .  Applying assumption 
(ii) and (2.8) it may easily be checked that the risk functions of M , ,  Z 
and L,, Z are identical within model @. Then (2.8) implies that for all 
(6, V )  E 9 

R(0, VJL)-R(0, VIM) = 0' (2: zl:)d 2 0, 

where 

(2.9) Cll =O, C12=(i-L11)'(I-L11)H-(I-Mll)'(l-M11)K=0, 

while 
CZ2 = H1(I-Lll)'(i-Lll)H- K1(i- Mll)'(I-Mll)K. 

Applying (2.9) we can show that C,, = 0 so that < may be replaced 
by = in (2.8). But this is a contradiction and the proof is complete. 

If 9' = W n  x [ V ] ,  where V is any n.n.d. matrix, then using some notation 
introduced by Rao [9] and Zmyilony [I11 we may formulate Theorem 2.2 
as follows: - - -  

COROLLARY 2.1. The estimtor LY is adrnissibb within model 9" x [I/1 
if and only if L satisfies the following conditions: 

(i) LV is symmetric, 
(ii) %' (L- I) c B ((L- I) v), 

(iii) LVL! ,< LV. 
It may be worth-whle adding that this corollary is derived directly from 

Lemma 1.2 without making any reference to Cohen's theorem mentioned 
in Section 1. 
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Next we establish a uniqueness result for admissible estimators, which 
will be used in the proofs of the last three theorems. 

LEMMA 2.1. If  LY is admissible within model with any parameter space 
B and i f  M Y  is another estimator with the same risk function, i.e. 
R ( 0 ,  VIM) = R ( 8 ,  VIL) for all (a ,  V ) E ~ ,  then M = L. 

Proof.  As known, the risk function R(8 ,  V ( L )  as defined in Section 1 
is a convex function of L for all (8, V ) E ~ ,  whereas it is a strict convex 
function of L when V is p.d. Thus, if there exists a p.d. matrix in V ,  
the assertion is obvious. Otherwise, we may assume without loss of gen- 
erality that 

Then, by part (i) of Theorem 2.2, Mzl = LZ1 = 0, M Z 2  = LZ1 = I and 
there exist matrices K and H such that MI, = ( I - M , , ) K  and 
L I 2  = (1-LII)H. 

In turn, part (ii) of Theorem 2.2 together with the assumption that 
MY and LY have the same risk function impIy then that Mll = L,, . 
Using this fact and once more the assumption that LY and MY have the 
same risk function, we obtain ( I -  L,,)K-(I - Lll)H = 0,  whence M = L, 
which completes the proof. 

Theorem 2.3 below gives a condition under which the necessary conditions 
appearing in Theorem 2.1 are also sufficient. It is more general than Rao's 
theorem mentioned at the beginning of this section. 

THEOREM 2.3. If 9 '  consists only of p.d. matrices (except for the zero 
matrix), then LY is admissible within model 9' = 9" x Y if and only if all 
eigenvalues of L are in LO, I] and LV is symmetric for some nonzero matrix 
V in Y. 

Proof. The necessity has already been established in Theorem 2.1. To 
show the sufficiency suppose that MY is as good as LY and that LV,, 
where 'V, is a p.d. matrix in V ,  is symmetric. Then, by Corollary 2.1, the 
estimator LY is admissibIe within model g" x [&I. Consequently, the risk 
functions of MY and LY are identical for all (9, V,) E B so that M = L by 
Lemma 2.1. This proves that LY is admissible. 

I The assertion of Theorem 2.3 may be rephrased as foIlows: 
The estimator LY is admissible within model 9" x Y  if and only if there 

exists a nonzero matrix V E V  such that LY is admissible within model 
w n x [ v l .  

The following example shows that this corollary may not hold when V 
contains singular matrices. 
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Example. Let Y be a random vector with the parameter space 5%'' x Y,  
where V is generated by the unit matrix and by 

From Lemma 2.1 it then follows that the estimator LY, where 

is admissible. In fact, if M Y  is as good as LZ: then M must be of the form 

by Corollary 1.2, and, moreover, M must satisfy (1.2) with ' 

16 4 ,=(; p), m = ( q  and Y - I ,  

since L satisfies (1.2) with the above-specfied matrices n, 8 ,  and V This 
leads to m = 2 and n = 1/2 so that M = L Hence LY is admissible.' 

If there existed a nonzero matrix V ~ " i "  such that LY were admissible 
within model 9, x [V], the matrix LV would be symmetric by Theorem 2.1. 
Now, since 

LV is symmetric if and only if 

The matrix L ,  however, does not meet the conditions of Corollary 2.1 
with V as above and 2' > 0. Hence LY is inadmissible within each model 
B2 x [V] when V ranges over all nonzero matrices in Y .  

A further immediate consequence of Lemma 2.1 is the following result: 
THEOREM 2.4. Each estimator admissible within model 9, = 9" x Y ,  is 

also admissible within any model 9, = 9" x Y ,  if Y ,  c Y,. 
Proof. Let LY be admissible within model 9, and suppose to the 

contrary that it is not admissible in model 9,. Now, if MY is better than 
LY within model P,, it must be therefore as good as L Y  in 9,. But L Y  
is admissible in 9, so that M = L by Lemma 2.1, which is a contradiction. 

We shall conclude the paper with a theorem referring to the case where 
V coincides with the family Y", of all n.n.d. matrices. To this end let 
Y,, n = 1 , 2 ,  ..., be a random vector with the parameter space 9, = Bn x V,. 



THEOREM 2.5. A necessary and sufficient condition for the estimator L x  
to be admissible for E x  within model 9, is that the eigenvalues of L are 
in [0,1], 

Proof. CIearly, the necessity of this theorem is ensured by Theorem 2.1. 
Now suppose that the eigenvalues of the matrix L are in LO, 11. Since we 
may assume without loss of generality that L is an upper triangle matrix, 
the sufficiency can be derived straightforward by induction over rn from the 
following result : 

The estimator MY,, where 

is admissible for EY, within model 9, 1~[0,1] and if M2, Y,-, is 
admissible for EY,, , within model P,-, , m = 2, 3, .. . 

To prove this latter ,result suppose that NYm is as good as MY,. Then 
necessarily 

by Corollary 1.1. Partitioning correspondingly 

.=(::) and v =  (;: 
we find after some computations that for. all (8, V ) E P ,  

0 < R(0, VIM)-R(0, VIN) 

= R(82, G2IM*z)-R(62, %2lN,2)+tr ( ~ ; 2 ~ , 2 - N ; 2 N , 2 ) ( ~ 2 8 ; + t / 2 2 ) +  

+2(M12-N12)[AV;2-(1-il)01 K]. 
Since el and 8, may be arbitrary and since VI2 is subject only to the 

condition 9 (K2) c 9(V2,), we have N12 = Mi, and, therefore, the last 
two terms on the right-hand side cancel. Consequently, N,, Y,-, is as good 
as M2, Y,- ,, which implies that N2, = M2,, since M2, Ym-, is admissible 
within B,-,, Hence MY, is admissible for EYm as asserted. This completes 
the proof of Theorem 2.5. 

Appendix. 
Proof  of Lemma 1.1. Lemma 1.1 states that L,+Zo17, where 2, is 

an (n x n)-matrix, minimizes R (@, V (  . ) in 9, i.e. that 

if and only if 
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To show this it will be convenient to introduce the following notation: 

S = n ( @ +  v)n and T =  @IT-Lo(@+ V)n. 

With thii notation we obtain B?(T') c 9 (S'), so that SS+ T' = T'. 
Using this fact, by straightforward computations we see that 

R ( @ ,  VIL,+Z17) = tr(ZS-T)S+(zS-T)'-tr TS' T ' + R ( @ ,  YlL,). 

Since 9 I S Z ' -  T') c W ( S + )  and S+  is n.n.d., it is now evident that the 
right-hand side reaches its minimum value with respect to Z if and only 
if ZS = T, which in terms of the original notation reduces to (A.1). 

proof of Lemma 1.2. This lemma follows by arguments similar to 
those used by Olsen et al. [7] to show that an admissible unbiased 
estimator-is locally best at some nonzero point and by La Mbtte [6]  to 
show that an admissible estimator is locally best at a nonzero point 
in [TI. 

Under assumption (1.5) it is sufficient to show that 

because 0& W. Suppose to the contrary that 0 $ W, Since by assumption W 
is -a compact convex set, the separating hyperplane theorem assures the 
existence of a matrix N such that 

(A.2) tr ( [ ~ ( n @ n + v n ) - n ~ n ] ~ ' )  < o 
for all (n@17, Vn) in W. 

Now define for each y E 92 a matrix M = L+ yHIT, Clearly, M E 9. 
Taking into account (1.5) it can easily be verified that 

where a = tr Hn(@+ V)I;CH' and b = tr {[L(D@IT+ Vl7)- n@n] H'). Now 
(A.2) gives a = a (@,  V) > 0 and b = b(@, I/) < 0 for all (17@lIl VL!) in W. 
Then for an arbitrary but fixed pair of matrices (lI@n, VD)EW the 
quadratic polynomial n(@, V, y) in y achieves its minimum value -b2/a 
when y = g = -b/a.  Since g, considered as a mapping from W to @, 
is continuous and strictly positive on the compact set W, there exists an 
E > 0 such that g(D8I7, V17) 2 E for all (n@17, V n )  E W. Therefore 

E - ~ x ( @ ,  v, E )  G g- l (n@n,  v n ) ~ ( @ ,  v,g(n@n, vn)) < o 
for all (17@lI, Vn) in W. This 'proves that 

R(@,V(LtyH17),< R(@,V(L) for all (@,V)E[F] 

with strict inequality if ( D m ,  Vl7) is in "W; contradicting the admissibility ' 
of LY. Hence the proof is complete. 
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