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Abstract. This paper deals with the intersection of a non-random 
k-dimensional flat with a subset of R~ which is the union of 
infinitdy many part~cles It is described by a stationary marked 
point process @, where the points are the positions and the marks 
deterrmne the forms of particles. Then the intersection set can be 
described similarly by a stationary marked point process !P. The 
intensity and the Palm mark distribution of Y can be expressed in 
terms of the corresponding characteristics of @. The formulae gen- 
eralize well-known formulae for the Boolean model (i.e. inde- 
pendently marked Poisson process) to a quite general case. Further- 
more, they are similar or equivalent to those for cross-sections of 
compact sets by Poisson flat processes. Since the formulae connect 
k-dimensional characteristics with d-dimensional ones, they are of 
stereological interest. 

1. Introduction. A classical problem of stochastic geometry is the study 
of random cross-sections of bodies with planes or lines. There are two 
approaches which in some cases yield identical results. One may fix a body 
and assume that the intersecting planes (lines) are members of a stationary 
Poisson plane (line) process (see 141 and [2], ch. 4) or fix a plane (line) 
and consider infinitely many copies of a body scattered in the space whose 
positions (for example, midpoints) form a stationary Poisson process (see 
121, ch. 5). 

In this paper we study a situation in the spirit of the second approach. 
We consider an in6nite set of random particles in random positions in Rd 
and assume that this structure can be described by a stationary marked point 
process. This is a very general assumption, since there may be dependences 
between point distances and shape and size of particles. Consequently, the 
following model may be a good approximation of many real structures. 



Let 6 = {x,) be a point process in Rd and let ( K , )  be a sequence of 
non-empty compact subsets of Rd. Moreover, let C, stand for the n-th 
member of the considered farmlies of bodies. Assume that C, = x, + K,, 
i.e., x, is the position of C, for n = 1 , 2 ,  ... Assume that @ = {[x*; K , ] )  is 
a stationary marked point process in Rd and that [if', RJ is its space of 
marks. Here X' is the set of all non-empty compact subsets of Rd, and A' 
is the Bore1 cr-algebra of subsets of X' generated by the Hausdorff metric [2]. 
Finally, assume that 6 has a finite intensity, say A. Then. the intensity 
measure A of @ is of the form A = Apx  D ,  where p is the d-dimensional 
Lebesgue measure and D is a distribution on R called the Palm mark 
distribution (see [I)). 

Let 8 be the intersecting k-dimensional flat (1 < k < d) ,  i.e., a k-di- 
mensional subset of Rd paralIel to a k-dimensional subspace. The assumption 
of stationarity ensures that results established for a particular k-dimensional 
flat hold for all k-dimensional flats of Rd parallel to 8.  Thus, we may 
assume without loss of generality that 

8 = ((z~, -,., zd): Z k + l  = = Zd = 0).  

Consider now the following marked point process Y = ([y,; LA) with 
points in 5 and marks which a,re subsets of 5. Every marked point 
[y,; L,] results from a marked point [xn(,,; Knc,,] of @ which produces 
an intersection with 5,  i.e. 

If xnmm, = (tl, ..., td), then y, = (t,, ..., t,, 0, ..., 0) (with d- k zeros) and 
Lm = &,,+K,,$ n 8) - ym, i.e., ym is the projection of x,, onto 5 and 
L, is the Intersection of K,,,, + x,,(,,-ym with 8. 

Note that !P is a stationary marked point process on 8 x  X; ,  where 
XL is the set of all non-empty compact subsets of 8. The intensity 
measure of Y, say A,, takes the form A, = i k p k  x  D,, where A, is the 
intensity of (y,], pk is the Lebesgue measure on 5, and D, is the Palm 
mark distribution defined on the a-algebra & of elements of A' in 5. We 
interpret D, as the distribution of a typical body in 8. 

2. The general formulae for A, and D,. To establish general formulae for 
the intensity A, and the distribution D, we introduce the following notation. 

Let cp: R ~ - ~ x X '  + Xi  be defined for ( t , , , ,  ..., t,) E R ~ - ~  and C E  X' by 

Moreover, for every d E XL let 



Stereological formulae 

THEOREM. We have 

Proof. Let A = [0,  l )kx  ( 0 ) d - k ~ d .  Then 

(2.4) Ak (A) = #Ik Dk (d), 

Moreover, with x  = (t,, ..., t,) we have 

Ak(A) = E l ~ ( t ~ , . , . . , i ~ , o ,  -.., O , ( ( X + C ) ~ % ) - ( ~ ~  ,..., tk,O ,..., 0)) 
. [ x . C l d  

= AMk (.dl. 
This combined with (2.4) yields Ak D, (d) = AM,(&). Finally, letting 

d = 2; gives (2.2), and this implies (2.3). 
Note that the distribution Dk depends only on the Palm mark distribution 

D of @ and it is independent of the other characteristics of a. Thus the 
formulae in 121, p. 146, for intersections of the Boolean model (i.e. inde- 
pendently marked Poisson process) with flats remain true for the general 
mode1 considered here, where the point process {x , )  needs not be a Poisson 
process and where dependences between positions and particles are possible. 
Mk defined by (2.1) corresponds to the measure of flats (in the sense 

of integral geometry) which intersect a random set with distribution D 
giving an intersection figure in A. Thus, for the study of random cross- 
sections of a compact body with distribution D by flats parallel to 8,  the 
usual methods of integral geometry and geometrical probability would also 
yield (2.3). Consequently, it is possible to replace the study of random cross- 
sections (in the sense of integral geometry) of a random set with distribution 
D by that of the intersection of a fixed flat with a stationary marked point 
process having the mark distribution D. This may simplify the solution in 
some cases, as R. V. Ambartzumian suggested to me. An example is the 
study of random cross-sections of the "typical" polyhedron of a Poisson 
hyperplane process. 

Clearly, formulae (2.2) and (2.3) may help to solve stereological problems 
in which Rk and Dk are given and 1 and D are unknown. In [33 and t53 
the particular cases of spherical and convex particles have been studied by 
the use of methods similar to those in this paper. 
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3. Two particular cases. In this section we find formulae for M ,  for two 
examples which are closely related to two problems studied by Matheron 
(121, p. 70 - 7 1 and 87 - 88). Whereas Matheron considered the cross-section 
of a fixed set, say C, with Poisson flat processes, we treat here the 
intersection of structures as above with a fixed Rat, where the mark distri- 
bution is related to C. For convenience of the reader we preserve the 
notation introduced in 121. Thus T denotes the functionaI of a random 
closed set, F ( C )  the surface of C, bk the volume of the unit ball in Rk, Yk 
th,: family of all k-dimensional subspaces of Rd, Gk the unique probability 
measure on 9, -which is invariant under rotations, SI the subspace or- 
thogonal to S, nSL the projection onto SI and, finally, y (r, u)  the (d-1)- 
dimensional volume of the projection of the set B n (ru+ B) onto the hy- 
perplane orthogonal to the direction u of the translation vector ru. 

(i) Random cross-sections of a compact set 3. Assume that @ has the 
following particular property : 

The marks K, are generated from a (non-random) compact set 3 by 
rotating it independently according to a distribution G on Y,, which means . 

that the functional T of the marks, 

is given by 

Here we identify S €9, with the rotation us which transforms 8 in 
S and write 

I if w s B n K #  9, 
0 otherwise. 

G *  is the distribution on Yk with G * ( 9 )  = G(&-l), where 9 c 9, and 
W-' is the set of rotations inverse to those of 9. 

In our case, the formula for M k ( d )  takes a simple form, since the 
distribution D is completely determined by G ,  and q (tk, , , .. . , td, C) depends 
only on os or S, 

(P(tk+l, . . . 3  td, C) = (P@k+l, . - . r  td,x). 
Hence 

Mk(4 = j j t (&k+l, ..., td, S))rlld-k(dtk+l X ..- ~dtd)G*(dS). 
4 ~ d - k  

Let K E X; and let Sku, be the set of all elements of Sh having 
a common element with K. For d = A'k,K we have 



Stereologicial formulae 

Using the notation (wsB, K) for the set (...) in (3.lh we obtain 

Mk(&k,K) = g[ k - k ( { % B 8 .  KI)G*(dS). 
k 

Furthermore, 

Mk(xa = J k-k (n ,B)G(ds ) .  
' k 

The functional of the "typical" intersection set corresponding to D, is 
then given by 

. . .. . 

This formula is quite similar to (3-5-4) in [2]. The difference resits 
from the fact that our intersections are contained in the (fixed) 8 whereas 
in [2] the intersection sets are contained in the intersecting random flats. 

(ii) Randona intercepts. Let @ be defined as in (i). Assume additionally 
that B is a compact convex set with non-empty interior and that G = 6,. 
To study intersections with lines, we assume that 

5 = ( ( z ~  , . . ., z ~ ) :  Z2 = . . . = Zd = 01 . 
We are interested in obtaining the probability P ( L 2  E) that the length 

L of a "typical" intersection segment in fJ is greater than or equaI to I, i.e., 

where 2, is the set of all intervals in 5 with length greater than or equal to E .  
In the considered case we have 

Since the distribution D is given by 6, and since cp(t,, .. ., t,, C) is 
for fixed t,, ..., t, a function only of the direction u of S E Y,, i.e., 

~ ( ~ 2 ,  t,l C) = ~ ( t 2 ,  -.., td, u)1 
we obtain 

MI (91) = 19, ( ~ ( t z ,  .. ., t,, u))pd- , (dt2 x ... x dtd)Ol (du) 
9, ~ d - i  

Since B is convex and compact, we have M, (X i )  = M, (9,). From 
the integral geometry it is known (121, p. 78) that 

6 - Rob.  Math Statist. 2(2) 



which finally gives 

P ( L  2 I )  = c y (1 ,  u)W,(du).  
9 1  

This is Matheron's [2] formula (4- 3- 3). 
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