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'ON THE NUMBER OF k-TREES IN A RANDOM GRAPH

BY

MICHAL KARONSKI (POZNAK)

Abstract. Let K, , denote a random graph obtained from
a complete labelled graph K, on n vertices by independent deletion
of its edges with the prescribed probability g =1=p, 0 <p < L
Moreover, let p = p(n) and let X% denote the number of r-vertex
subgraphs (r > k+1) of a random graph K, , being k-trees. In this
paper we prove that, under some conditions imposed on probability
p(n) as n - oo, the random variable X% has asymptotically the
Poisson or normal distribution. We generalize earlier results of
Erddés and Rényi [2] dealing with the distribution of the number
of trees (ie. random variable X'V} as well as the results of Schiirger
[7] on the number of cliques in K, , (ic. random variable X® )

1. Introduction. Let us consider a random graph (r.g) K, , obtained fr.om
a labelled complete graph K, by means of the following procedure:

n

2
probability g, 0 < g < 1, ie. each edge remains in K, with probability

_Each of ( ) edges of K, is independently deleted with the prescribed

fn
p = 1—¢q and the expected number of edges of an r.g. K, , equals (2) p.

Here we shall consider the asymptotic distribution of the number of
subgraphs being k-trees of size r in an 1.g. K, ,,, Where the edge probability
p depends on the size n of an r.g. and n— oo,

The notion of k-tree (k = 1,2,...) was introduced in [3] and can be
defined either as a k-dimensional simplicial complex with certain properties.
or as a graph. We shall use here an inductive definition of k-tree (see [5]
or [6]). A k-tree of size k+1 is a complete graph on k+1 vertices. A k-tree
T® of size r+1 (r > k+1) is obtained from an arbitrary k-tree T¥ of

r+1
size r by adding a new vertex and joining it to those k points of T,*

8 — Prob. Math, Statist. 2(2)
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which form a complete graph. A k-tree of size r consists of r—k complete
subgraphs of size k+1, k(r—k)+1 complete subgraphs of size k and has

(k+1 _ v
kr—( -; ) edges. It has been shown (se¢ [1] and [4]) that the total number

of k-trees which can be formed on r labelled vertices equals

(Z) [k(r—k)+17 7+,

In this paper Wé_ééhefalize the results of .Erddos and Rényi [2] on the
number of trees and the results of Schiirger [7] on cliques. The methods
of proofs are mainly those of [7]. :

2. The Lemma. Suppose that G, = (V(G), E(G)), i = 1,2, ..., t, are graphs
whose vertex sets V(G;) as well as edge families E (G) = V(G-)x V(G,-) are

not necessarily disjoint. Then by their union U G, we mean a graph
= (V(G), E(G)), where i=1

V(G) = .91 V(G) and E(G) = ‘{;JIE(G,).

Denote by |X| the cardinality of a set X and by a,

a=afr, k) = kr-—(k-z!_l),

the number of edges of a k-tree of size . In this section we state the following
purely graph-theoretic result:
LemMma. Suppose that T®,T%,..., T® are pairwise different k-trees of

size r, r 2 k+1, not all of which are pazrwzse vertex disjoint, G, = U T®

‘zs their union, [V(G,)l = v, and IE (G| = e;. Then v,/e, < max {bo,bi,bz}
where
@t=1r . Cr—1

’(1) - bo = bo'(?) = t-Da+1’ by =50 = ——,
_ t—-DHr+1
b =600 = Tyya3k

Proof (by induction on t). Put
) -1 ‘

= |V (T®- U TV, t> 2.
: =1

It is easy to check that if 1 < h, < r—k, then e, > e,_;+kh,, whereas

e >e., +a—.(r—2h’) if r—k+1 < h <r—1.
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One can also check that the inequality

) Vy—y+r—i < vy +r—1

: i\ e-1+a
. €_yta— 2

holds for i = 1,2, ..., k—1. Moreover, it should be noticed that bo (2), by(t),
and b, (t) are increasing functions of t. Having these facts in mind we begin
" our proof by considering t = 2. . . .
Case 1. Let h, =0..(r > k+2). Then v, =0, =7r, e; > e;+1 and,
consequently, ' : . '

[ ] r
2 <

e, a+1
Case 2. If 1 < hy; < r—k, then _

= b (2).

v r+h r+h r+1
2 =—2<—2< = b,(2).
e, e a+kh, at+k -

Case 3. Let r—k+1 < h, < r—1. Now, by (2) we have

Uz < i‘+h2 < 2!‘—1

e, —h,\  2a
e2 el+a_(r 2)

= 5,2
: |

and wé arrive at the thesis for ¢t = 2.

Let us assume-that our thesis is true for some ¢t > 3. Suppose that G,
is the union of t—1 k-trees of size r not all of which are pairwise vertex
~ disjoint and ‘

%1 < max {bo(t—1), by (t—1), by (t;—l)}

€1

* holds. Let us take now the union of G,_, with a k-tree also of size r.
Case1.If b, = 0, then v,/e, < v,_,/e,_, and the thesis follows immediately.

Case 2. Let 1 < h, < r—k. Assume first that, for G,_,, b,(t—1) exceed
by(t—1) and b, (t—1). Then : '

U < -y +h < (t=2)r{v_,+h}
e e_1+kh v {(t—2)a+1}+khy(t—2)r
(t=r{o-,+h) - _(=dr

= bo(t—1) < by (t).

R kr(t—2) | - (t—2)a+1
{(t—2)a+1}{v,_1+h,m}
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Similarly, if b,(t—1) is maximal, then
{t=Yr—1}{v,_ 1 +h}
k[(z—-1)r—1]
a(t—1)
and if, for G,_;, b,(t—1) is greater than b,(t—1) and b,(t—1), then

Uy
— <

et
a(t—l){u,_1+h,

< b, (t—1) < by (1),

%< by().
e, .

Bt 4

"Case 3. Let r—k+1 < h, < r—1. As before we assume first that, for
G,_y, bo(t—1) exceeds b,(t—1) and b,(t—1). Then by formula (P)] and the
induction assumption we obtain

b o v-1+h, < vy +r—1

= -~
e r—h e,_1+a
t et‘1+a_( 2 t) t—1

ri—=2){v,., +r—1}
.. ar(t—-2)
{a(:—2)+ 1} {U,_l +m}

if r<a(—2)+1, which is true for all +>3 and k> 1. Therefore
v,/e, < by(2).
If b, (t—1) is maximal, then

< bo(t~1)

=

o _ {re=D+1}{o_,+r-1}
e a(t—1){o_;+r—1/¢—1)

Finally, if, for G,_,, b,(t—1) is greater than b,(t—1) and b,(t—1), then

< by (t—1) < b, (8).

b =94 r-1)

e, alr(t—2)+1]
{é(t—2)+k}{v: =Tk }

whenever a(t—1) > k(r—1), which holds for all ¢ 3> 3. Consequently,
v/e, < by (t).

To complete the proof of our lemma we cons1der also the situation
when G,_; consists of t—1 pairwise vertex disjoint k-trees of size r and
next we form the .union of G,_; with some k-tree of size r.

Case 1. If h, =0 (r = k+2), then
U U1 r(t—1)

— < = = b t).
.8, e_1+1 - a(t—1)+1 o)

< b,(t~1)
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Case 2. If 1 < h, < r—k, then

L ri¢=0+h
o S aeonimn, S b0

Case 3. If r—k+1 < h, < r—1, then

L r(t—1)+h, .\<.. b, ()

e, a(t—l)-{-a-—(r_zh')

Thus the proof is'c;ﬁiplete.

3. Asymptotic distribution of the number of k-trees. Let us denote by X&)
the number of k-trees of size r in an r.g. K, ,u,. We shall prove the
following theorem: :

THEOREM ‘1. Suppose that r 2 k+1, k = 1,2,..., and that -

M

3 lim p(n)n"® = g&(0, 00) exists. .

Then

. A
lim P(X,(,’2.= i)=——_'—e"1, i=0,1,2,..‘,
n—>w [ 3

where
@ = —:Tg(;) [+ 11772
and | o

a=alk) = kr——(k;l).

~ Proof. Let 7® denote the family of all k-trees of size r which can be
formed on the set of n labelled vertices {1,2,...,n}. Suppose that
TR e T® and :

if T® < K, pm>

1
I T(k) =
1 ( r-O) ) {0 otherwise,

whereas

all other k-trees of size r contained in K, i),

. 1 if T® < K, and T is vertex disjoint with
I,(T;%) =
0 otherwise.

Moreover, let _
: ' §¢P = YOE(LITL(TY) ... I(TP), i,j=12,
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where E(-) denotes the expected value, and the summation, is over all
combinations of ¢ (¢t > 1) different k-trees from the family 7 ® which for
i =1 are pairwise vertex disjoint and for i =2 are not pairwise vertex
disjoint. First, we show that if (3) holds, then §% >0 as n— co.

Assume that t > 2,n > tr, TH, TY, ..., T® are different k-trees from 7 ®
which -are not pairwise vertex dis_]omt and put

= lUi (V@D VT
_Therefore
=y (\:J TO) = Jrewy— o —wpy = 2,3,.0t
Thus, for every r = k+1 and given ¢t we get

1 n\/ r n—r
(2,1) - 4
§-H < t' Z ( )( _ X ... X
0\W2 ..... wt\r r WZ r W2

LSwyt.. +wS(t-1)r

x}((t-—l)r—wz— —wt_l)(n—(t—l)r+w2+ +W'_1)x'

W, r—w,

X {(r) [k (r—k)+1]""_2}tpe‘,

where ¢, is the number of edges of the graph U T®. Consequently, we
obtain i=1

t
S < —t,lr' {(;)[k(r—k)+1]’“""2} x

);Z’ntr_wz_.-'—w'pet{iﬁ (jr—wz'— ves _Wj) [(7"‘"Wj+1)!]_1}'

j=1 Wita

By the Lemma we have

tr—wy— ... —w,

. S ’
G : 2 “nax {bo, by, bz}

where b, b, and b, are determined by formula (1). It follows from (5)
and (3) that for every ¢t > 2

(6) ’ B SR - 0(1).
On the other hand, for ¢t > 1 we get
0 < SPV—-8512 < (1+1)SED.
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Consequently, for ¢ > 2 we have

S§1.2) = S§1'1)+0(1).

But
— 7\ -1 t
= 0 (4 e
1 {1 r —p=al’
~ 7{7 (pnr/a)n(k) [k(r—k)+1]' k z} .
Therefore
t
@) s lim &2 = %, t>=1,

where A is given by (4). .

If we denote by Y® the number of all k-trees of size r being vertex
disjoint with all other k-trees of size r in K, ,q, then using (7) and
Bonferroni’s inequalities

i+2s—-1

i i+2s
2 (-1)f-f(’i)s§1-2>sp(x,§';)=_i) PG 1)f ‘()sﬂ D, s>,

"we obtain

lim P(Y® =§) = ’1 e,

n— o

ie. Y® has the Poisson distribution with the expectation A. The thesis of
our theorem follows immediately from the fact that, by (6),

PXY # Y9 >0 asn— oo.

- Consider now two specific k-trees, namely a I1-tree and a k-tree of
size k+1.

In the first case (k=1) the 1-tree is s1mp1y a tree in the usual sense
and X{)) denotes the number of trees of size r in K, ,u. Thus, from °
Theorem 1 we - obtain the followmg result which was proved earlier by
Erdds and Rényi [2]:

COROLLARY 1. Suppose that r > 2 and

® lim p(m)n™~Y = g €(0, o0) exists.

Then the ruv. X$) has asymptotically the Poisson distribution with the
expectation

1
A= —Q'-If_l.
r:
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In fact, if condition (8) holds, then in an r.g. K, ,, all subgraphs of size r
being trees are almost surely isolated (see [2], p. 27). Therefore, the r.v. X!
is the number of isolated trees of size r.

In the second case, where r = k+1, the k-tree is the smallest one and
is simply a complete graph on k+1 vertices. The random variable X® ,,
is now the number of complete subgraphs of ‘size k+1 (k+1 — cliques)
in an r.g K, p(n)"

Thus, also from Theorem 1, we obtain the following result which was
proved earlier by Schiirger in [7]: )

- COROLLARY 2. Suppose that k > 1 and

lim p(n)n** = ge(0, o0) exists.
. . noo ’ :

Then the random variable X%}, , has asymptotically the Poisson distribution
" with the expectation '

1= 1 QM+ 12,

- r!

Finally, basing on Theorem 1 and using the fact that if a random
variable X,; has the Poisson distribution with the expectation A, then
(X —A)/AY% has the standardized normal distribution as 1— co, one can
deduce the following

THEOREM 2. Let r = k+1 be fixed and suppose that

lim p(m)n" = oo,
n—a

whereas
Tim p(m)e=? =0 forall §>0.
Then
lim P{X®—-d)d~ 12 < x} = (2m)~ 112 j'c exp(—u*/2)du, —o0 < x < 0,
where ' -

d = d(ﬁ-’ r,k,p) = %:—- (;) [k(r—k)+ 1] %2 pe,

We omit a proof of this theorem because it follows similar lines as
proofs of the respective theorems from [7] and [2].
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