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LOCAL INVARIANCE PRINCIPLE FOR MARKOV CHAINS

BY

N CAROLINE NOQUET (LiLLE)

Abstract. We consider stationary homogeneous Markov chains
and the polygonal processes defined by a usual way using such chains.
There are many results about invariance principles of those processes.
In this paper, we prove that under additional conditions, a stronger
assertion (in some sense) is true. Indeed, we establish the convergence
in variation for the distributions of the functionals of such a process,
that is a local invariance principle. We study also the particular case of
positive Harris recurrent Markov chains. Finally, we prove that the
invariance principle and the local invariance principle remain valid
when the initial chain is homogeneous but not stationary.

1. INTRODUCTION

The origin of this paper is work done by Y. A. Davydov, who proved
a local invariance principle (IP) for a sequence of independent and identically
distributed random variables (i.i.d.r.v.’s). The method used by Y. A. Davydov
consists at first in estimation of the total variation (denoted by ||||) between the
distribution of a sequence of iid.r.v.’s and its translate.

Indeed, let £ = (,)n+ be a sequence of ii.d.r.v.’s defined on some proba-
bility space (2, o/, P) and taking values in (R, #(R), 1), where #(R) is the
o-field of Borel subsets of R, and A is the Lebesgue measure. For all ke N*, the
r.v. ¢, has the density p, assumed to be absolutely continuous (a.c.). Let I(p)
denote the Fisher quantity associated with p, defined by

Ip)=§ [%’ (x)jl p(x)dx.

Let a = (a, N+ be a real sequence a_nd ne N*. We denote by 2, and 25

the distributions of the vector &=(&;,...,¢,) and its translate
¢E+a=( +ay, ..., £,+a,), respectively. In this case, if I(p) < oo, we obtain

(kY 172-2,01 < V1) | ¥ .
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Then, using (1.1), Y. A. Davydov proved a local IP for the stochastic
functionals in the IP of Donsker—Prokhorov. Here, the sequence £ is such that,
for all ke N*, E(¢,) = 0 and Var(£,) = 62 < 0. Let us put S, = 0 and, for all
keN*, S, =&, + ... +&. Let ne N*. We can construct the polygonal process
{, defined for all te[0; 1} and all weQ by

1.2 (a(t, @) = \/— (S (@) + (2 — [12]) &gy + 1 (@) ],

where [x] is the integer part of x. Let P, denote the distribution of {,. The IP of
Donsker—Prokhorov ([2], Theorem 10.1) states that P,= W, where W is the
measure of the Wiener process {w(t); te[0; 1]}, and = is the notation for the
weak convergence. Let C[0; 1] denote the space of continuous functions on
[0; 1]. Thus, if ¢ is a functional defined on C[0; 1], W-~almost everywhere (a.c.)
continuous, we have

Po l=Wp !
Then Y. A. Davydov proved, by imposing more stringent conditions on

the common distribution of the r.v. £, and by restricting the class of functionals,
that it is possible to obtain a stronger assertion, that is to say

The aim of this paper is to use the same method to show a local IP for
stationary (or not) homogeneous Markov chains (m.c.’s).

2. NOTATION AND INEQUALITY

Let ¢ = (& en be a stationary homogeneous m.c., defined on (£2, &, P)
and taking values in (R, #(R), 4). Let IT denote its stationary probability
distribution with density n assumed to be a.c. and let P denote the probability

transition kernel with the family of transition densities {p (x, -); xe R}. For all

x € R, we suppose that p(x, -) is a.c. The quantity =’ is the derivative of =, and
p,,, p, are the partial derivatives of p. -

. Let us denote by g the transition density for a time-reversed (with respect
to H) chain. This transition density is given by

n()p(, ¥
n(y)
Now, let us give the following notion of I-regularity defined by Ibragimov
and Has’minskii in [12].

DeriniTION 2.1. Let O < R be an open set. The family {p(:, 6); 60} of
probability densities is said to be I-regular (or information regular) if the map
from O to I?(R, 1), sending 80O to p*/2(:, 6), is continuously differentiable (in
the sense of standard Hilbert norms on R and I?(R, ).

Q(ys )=
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Remark 2.1. This implies that, for all 80,

0 (. gep
PG OB R, 4.

Let us denote by I(6) the Fisher quantity defined by
2

10)=4 |2 5,0

LZ(R,1)

Here, I(0) can also be written in its usual form:

L (6/26) p (x, e>]2
' I@)=||——— x, 6)dx.
o= o
So, our regularity assumptions are the following:
(R) The family {=(-+1t); te R} is I-regular.

The corresponding Fisher quantity does not depend on ¢ and can be
written as

I(m)={ [%’ (x):lzrc(x)dx.

R

Set J = {xeR|n(x)> 0}.

(R*) The family {p(x, -); xeJ} is I-regular.

We denote by I*(x) the corresponding Fisher quantity defined for xe J as

8 2
I"tx)=§ [— (x,y)] p(x, y)dy.
RLP
(R™) The family {q(y, ); yeJ} is I-regular.
We denote by I~ (y) the corresponding Fisher quantity defined for yeJ as

_ 8 |
I“(n=1{ [— (x, y)—— (y)] q(y, x)dx.
RLPD T -
"~ "Moreover, we suppose that -
1) I's{I'®rx)dx<oo and I = [I"(y)n(y)dy < oo.
J J :
Let us put I = I(n)+I" +1". Finally, let a = (a)wn* be a.real sequence.

As in Section 1, we denote by 2, and 2% the distributions of the vectors ¢ and
&+a, respectively.

TaeorREM 2.1. If (R), R™), R™) and (2.1) are satisfied, then

2.2) 12— 2.l < /21 z az.



tional ¢ defined on X we set for all ce[a; b]
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Remark 2.2, This theorem is proved in [15]. Moreover, other inequali-
ties and applications are presented, in particular in the case of a sequence of
iid.r.v’s and a random translation. In fact, all those inequalities allow us to
prove absolute continuity between a sequence and its translate.

3. LOCAL INVARIANCE PRINCIPLE
FOR STATIONARY HOMOGENEQUS MARKOV CHAINS

Let f be a real-valued function defined on R. Let S, = 0 and, for all ke N*,
= f€)+ ... +f(&). Let ne N*. Then the process ¢, is defined for all
te[O 1]' and for all cueQ by

(3.1) Lt ) = ﬁ [Stoa @)+ (1t — [n]) f (Epuye 1 @)]

As before, P, is the distribution of {,. First, we define a new class of
functionals smaller than C[0; 1]. Then, if ¢ belongs to this class and if we have
the weak convergence for P,, we prove the convergence in variation. Finally,
we apply this result to the Harris recurrent positive m.c.

3.1. Definition of the class .#,. We can find the notions introduced here in
Sections 13 and 14 in [5]. Let (X, &y, P) be a complete separable metric space.
Each element ! of X generates a group of shifts G'={G!; ceR} with
Gi(x) = x+cl for xeX.

DeFmNiTION 3.1. A vector | is an admissible shift for P if

= P(G%)™! < P. Moreover, | defines an admissible direction for P if P* < P

for all ce R. The set of all vectors defining adm1ss1b1e directions for P will be
denoted by Hj.

The set 4 = {x+cl; ce[a, b]}, x, 1€ X, a, beR, is called a segment paral-
lel to the vector I In this case, we use the notation A||l. The segments

A4, = {x,+cl,; ce[a,; b,]} converge to 4 if x,—»x,l,—1,a,~ a and b,—b

(we use the notation 4, — A). Finally, for a segment 4 and a real-valued func-

P4(c) = p(x+cl).

DermNtTION 3.2. We say that the functional ¢ belongs to the class
M(x, 1, (1)), where x,leX and I,—1, if there exists a neighborhood V
of the point x such that for P-almost all yeV and any segment
4 ={x+cl;cela;b]}, AV,

4,11, , .
= —) .
An—’A (P " n-» o qDA

DermNITION 3.3. We say that ¢ belongs to the class M, if for P-almost all
xeX there is a vector le Hp such that gpe.#(x, I,(1,)) for any sequence (/,)
converging to [.
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In the following, we are especially interested in the class .# . Let X be the
space C[0; 1], and P be the Wiener measure W.

Remark 3.1. We know that
H, ={leC[0;1]]! ac, 1(0)=0 and I'e I? ([0; 1])}.

Remark 3.2. The classes .#, and .#, are very large. For example, we
can assume that X is a separable Banach space. We denote by X* the dual
space to X equipped with the weak*-topology, and by -, -)> we denote the
bilinear form expressing the duality of X and X*. We say that a functional ¢ is
continuouslyF’ réchet differentiable in a region G < X if the mapping x — D¢ (x)
from G to X* is continuous in the weak*-topology. If we suppose that for
P-almost all x there exists a neighborhood V, of the point x in which ¢ is
continuously Fréchet differentiable and if Df(x)(Hp) # {0}, then e .#, ([S],
Theorem 13.7).

Now, we cite some examples of functionals which belong to .4y, .

ExaMmpLE 3.1. Assume that there exists t,€[0; 1]. The following func-
tional belongs to #:

¢, C[0; 1] >R,
x> @y (x) = x(to)-
ExaMpLE 3.2, The following functional belongs to .4, :
@, C[0; 1] >R,

X @,(x) = sup x(2).
te[0;1]

ExampLE 3.3. The following functional belongs to .#:
(p3: C[O; 1] —)Rs

x> @3(x) = sup |x(1).
te[0;1]

ExaMPLE 3.4. Let us consider the following integral functional:

@,: C[0; 11> R,
x> @ (x) = g q(x () u(dr),

where u is a finite measure on # (C[0; 1]) and g is some measurable function
on R. In view of Theorem 14.4 of [5], if we suppose that for all ¢ > 0 there
exists an open interval J = (—¢; ¢) on which ¢’ is continuous and non-zero,
then @, e #y.

Remark 3.3. Assume that there exists ¢ > 0. Let W, denote the dis-
tribution of the process {ow(f); t€[0; 1]}. It is clear that .#y_ and .#,, are

the same.
6 — PAMS 19.1
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Other examples of functionals which belong to .#, or, more generally, to
Mp are available in [5] and [6].

3.2. Local invariance principle. The polygonal process {, is defined at the
beginning of this section by (3.1) and the distribution of ¢, is P,.

THEOREM 3.1. If the following assumptions are satisfied:

(1) R), R"), (R7) and (2.1);

(2) there exist 6 >0 and M > 0 such that, for all xeR, f'(x) > 6 and
If" ()| < M; 7 ‘

(3)- P,=W, for some constant ¢ > 0;

" (4) wedy,
then y var
Po ' =S W,oh

Remark 3.4. We shall see in the following section that if we add more
assumptions on the m.c. £ and on the function f, then there exists an IP for the
process {,, that is to say that assumption (3) will hold true for some constant o.

3.3. Harris recurrent positive Markov chains. Now, let us remind IP for
m.c. There are different versions of the central limit theorem (CLT) and IP for
m.c. Some of them are stated in terms of distribution of some return times or in
terms of some auxiliary objects like “atoms” (see, for example, Theorem 7.6 in
[14]). We prefer here the approach based on solvability of an equation in the
Hilbert space I?(J, IT) with respect to the stationary probability distribution II.
Gordin proved a CLT for general stationary sequences in [8]. Then, IP for
general stationary processes was proved in [9]. Later, in [10], this approach
was specialized to prove the CLT for general stationary m.c. A bit of time later,
under the same assumptions, the IP was announced in [11]. In the same way,
IP was proved in [13] for Harris recurrent positive m.c. Since we are going to
restrict ourselves to this case of m.c., [13] can be considered as one of appro-

_priate references. However, Maigret [13] considers also functions on the path

space of the chain which depend on two successive values of the chain. Here,
we restrict ourselves to functions depending on the current state of the chain

- -only. -

Let ¢ be a stationary homogeneous Harris recurrent m.c. on J with sta-
tionary probability distribution II. Let f be a function which belongs to
I?(J, IT) such that

(C) Pf = Pg—g with some gel?(J, II).

Remark 3.5. Representation (C) for a function Pf is possible if and only
if f can be represented in the same form:

(C') f = Ph—h with some hel?(J, II).

Remark 3.6. Let us observe that | s f (x)II{dx) = 0 is an obvious neces-
sary condition of the solvability of equation (C).
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Let us put
Lo, M) = {fel'(J, M | | £() M (dx) = 0}.
7

Remark 3.7. Equation (C) has a measurable solution for any
feLy(J, II). This is noticed in [13] and follows from Theorem 5.1 of [14].
Moreover, if |Pf| is a so-called special function (see [14] and [16]) and if
feLy(J, II), then we have Pf = Pg—g with ge L* (J, IT), which is the space of
measurable bounded functions. ‘

The assumption in the form (C) has some advantages for a Harris recur-
rent m.c. because Pf can be a “better” function than f. On the other hand, the
formula for the limiting variance looks simpler having been written in terms of
h from (C'). ‘

Let us denote by || ||, the norm in I*(J, I).

THEOREM 3.2. If & is a Harris recurrent positive m.c. and if feI?(J, I)
satisfies (C), then

P, =W,
where o = |lg—f1z— P (f—g)li = IIklIZ —IIPhII3.
This theorem is a compilation of results in [10], [11] and [13]. We
shall see that assumption (3) of Theorem 3.1 is satisfied with this con-
stant o.

Then the previous result and Theorem 3.1 allow us to give the following
corollary.

COROLLARY 3.1. If the following assumptions are satisfied:

(1) R), R”), R”) and (2.1);

(2) feI?(J, II) and there exist 6 >0 and M = 0 such that, for all xeR,
f'(x)=6 and |f"(x)) < M and f satisfies (C) (or (C')), with

a® = llg—f13—IIP (f— 93 = kI3 —|Phii3 > O;
(3) & is indecomposable; o

() pedty, B
en

Po ' =W,

n— 0

th

Remark 3.8. In Theorem 3.2, that is to say for the weak convergence, we
have not to assume that ¢ > 0, but this is necessary in the previous corollary
for strong convergence.

Remark 3.9. We shall see in the following section that assumptions (1)
and (3) allow us to conclude that the m.c. £ is Harris recurrent positive on J.
Using this and assumption (C), we have the IP (Theorem 3.2) and assumption
(3) of Theorem 3.1 is satisfied.
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4. PROOFS

First, using Theorem 2.1, we prove another inequality. Then we prove the
local IP, that is to say Theorem 3.1. Finally, we study the case of Harris
recurrent positive m.c.

4.1. Inequality. In Theorem 2.1, we have an inequality for total variation
between the distribution 2, of (&,,...,¢,) and the distribution #§ of
(¢ +ay, ..., &, +a,). In the following, we shall estimate the total variation
between the distribution of (f(¢,),..., f(£,)) and the distribution of
(f (&) +ay, = f(€)¥a,) denoted by 2, and 2%, respectively.

THEOREM 4.1. Let f: R — R satisfy the following assumptions:

(i) there exists é > 0 such that, for all xeR, f'(x) = 0,

(ii) there exists M > 0 such that, for all xeR, |f"(x)| < M.
If R), (R*), (R7) and (2.1) are satisfied, then

2M*
o+

Remark 4.1. In view of assumptions, it is clear that I<om.

~ A~ = n N 1
(41) - 22— 2.l < /21 kzla,f, where I=§I+

Proof fis a bijection (strictly increasing) on R. Therefore, (f Erent
remains a stationary homogeneous m.c. Let I denote the stationary probabili-
ty distribution defined by the density

, nlf ™! )]
TWY) = —————-
W= T
Moreover, let {#(u, -); uc R} denote the family of transition densities defined
by

) 1), (v

b vy = PUT @S 0]
U@l

In view of (i) and (ii), we can prove that % and p(u, -) for ail ueR are a.c. Let

{G(,-); ve R} denote the transition densities for a time-reversed chain. Those

#0050, v) _ 2l @IpL T @S @]
7() PO @InL o1

We shall estimate the following total variation:

g, u) =

n

192—2 )l = | |y +ay) [T Bl +a1, t+a)
Rn k=2

— 7t (uy) H ﬁ(uk—1,uk)|d’1-
k=2

We can apply inequality (2.2) to the m.c. (f (£)ien- For this, we calculate I(7),
I* and I . In view of (i) and (i) and wusing (a—b)* < 2a%+2b2,
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we obtain
Ay 2 2
4.2) 1(72):5[”T (u)] ) du < = 1)+
rRLT 0 0
In the same way, we obtain
. B. 2 1
4.3) Im=ff |:T"(u, v):l plu, v)dvi(wdu< 1",
RRLP d
o @) G, W] ) 1
@44 - I —iiliw] 4, u)dun(v)dvgyI .

In view of (4.2)+(4.4), we have the announced result. =

4.2. Proof of Theorem 3.1. The idea of the proof is to use inequality (4.1)
and a local limit theorem for functionals of random processes (Theorem 1 in
[3]). Indeed, we consider a sequence of probability measures (P,),.5* defined
on the g-algebra %, of Borel subsets of a complete separable metric space
(X, g). Let Z(X) denote the Banach space of finite measures on %, with the
total variation as norm. The restriction of the Lebesgue measure to % ([a; b]) is
Aja;p)- Let @ be a measurable mapping from X to R or, briefly, a functional.
Theorem 1 of [3] is the following

THEOREM 4.2. Suppose that P, = P_ and, for P_-almost all x, there exists
an open ball B with center at x, a number & >0, and (G,,; c€(0; €]; ne N*)
a family of transformations of X such that
(i) for each c€(0;¢), G.nx = G, X, n — 00, in measure P;
(i) G, is continuous for each c€(0; &) and for each ball S,
d(S, c) =sup ¢(z, G.,.x) >0, ¢c—0;
zeS
- (iii) limc'_,0 lim sup||P, G, —P,|| = 0;
(iv) for each 6€(0; ¢), 7 -

1{ t0:1 @28 = Apo;61 @201l P (d2) — 0, oo,
where ¢, ,(c) = ¢(G.(2)), ce(0; €], ne N*;
(v) for each 6€(0; ¢), the mapping
B Z(R),
2> o) Prrons

is continuous P -a.e.
Then

Bo 2P0
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In our case, X = C[0; 1] is a complete separable metric space and the
distance ¢ is defined for f, geC[0; 1] by

e(f, g9)= sup [f()—g(@)l.
te[0;1}

In view of assumption (3) of Theorem 3.1, we have P, = W,. Let ne N*. We
denote by F, the space of polygonal lines constructed on the points
(k/n, x(k/n)) for all 0 < k < n and all xe C[0; 1]. Therefore, F, has a finite
dimension and P, is concentrated on F,. Let II, denote the mapping from
C[0; 1}-to F,, which to all points x assigns the polygonal lineé constructed on
the points (k/n, x(k/n)) for all 0 <k <n.

Let ¢ be a functional which belongs to .#,,. Let X, denote the set con-
sidered in the definition of the class .#4,, that is to say W(X,) = 1. Let xe X,.
Then there exists /€ Hy, and a neighborhood V of x such that for W-almost all
yeV and any segment 4 = {y+cl; ce[a; b]} = V:

Al ot =" 1
=
A"‘—PA (PA“ " — 0O $

for any (I,) converging to I. Therefore, I and V are fixed by the previous defini-
tion. Let us choose an open ball B with center at x such that B = ¥V and let us
choose ¢ >0 such that, for W-almost all yeV, any segment A4 = {y+cl;
ce[0; ]} « V. For all ce[0; ¢] and all ye B, we put

G.,y=y+cll,(l) and G, ,y=y+cl

The aim is now to establish five assumptions of Theorem 4.2.
(i) For each ce(0; ¢):

Gpnx=x+cIl,(I) and G, ,x=x+cl

But I1,(l)— [ when n— oo. Consequently, G, ,x — G, x in measure P,.
(ii) For each ce(0; ¢), G, y = y+cl is continuous. For each ball S, we
have o

d(S, ¢) =sup ¢(z, G.,2) = sup |f(t)|—>0, c—0.

zeS te[0;1]

(iii) Let T, be the mapping from F, to R", which to all polygonal
lines constructed on the points (k/n, x,) assigns (\/nx,, \/r_l(xz—xl)
\/Z (Xs-1—x,)). Then T, is linear bijective. Let us remind that {, is the poly-
gonal line constructed on the points (k/n, Sk/ﬁ). Therefore

T,¢) = (f¢), ..., f(£)

and P, T,71 = 93,,. Moreover, {,+clI,(l) is the polygonal line constructed on
the points (k/n, Sk/\/; +cl(k/n)). Let us remind that S, = 0 et /(0) = 0 because
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Ie Hy. Consequently,

T, (,+ I, (1) = (f(é +cfl(1/n) ,f(é,,)+cﬁ(l(1)—l(1—l/n))).
If we put for all 0 <k <n-—1

wom 23]

I,(C +c17 2(D) = (f(¢)+cay, ..., f(E)+ca,).
But {, +cH ) =G ., Then PG IT 1= <. Finally, we have

then

1P, Gt =Pl = 1P, G2 T, — P, T | = |25 — 2.

In view of assumptions (1) et (2) of Theorem 3.1, we can apply Theorem 4.1 and
inequality (4.1) and we obtain

IP,Goi — Pl < c/2f Z ai.

n n k —1 2
Ya=3 n[l(—)—l<k——>] < I3
k=1 k=1 n n

Therefore, we have

But

IP, Gon — Pyl < /21 11l

In view of Remarks 3.1 and 4.1, we know that [ < oo and I’e I?([0; 1]). Con-
sequently, we can conclude that

lim limsup ||P, G, —P,|| =0

c—0
(iv) For each 4e(0; ¢), for all ce(0; ¢], and all ze B, we have
Dzn (C) = ¢(Gc,n Z) = (p(Z+CHn (l))s PDz,0 (C) = ?(Gc,m Z) = (P(-Z+Cl)~

Wé ) know that, for W-almost all zeB, A = {z:+c1; cel0; ¢]} = V. Let
us put
4, ={z,+cII,(l); ce[0; e1}|| I, (D).

We have IT,(I) » 1. If z, — z, then 4, — A. Therefore, in view of the definition of
the class ., we obtain

Apgl =5 dest,

n - o

where, for ce(0; g),

04,00 = 0(z,+ T, (D) = ¢,,,0), @4(c)=@(z+ch) = @;,(c).




88 » C. Noquet

Therefore, for W-almost all ze B, we have

-1 var -1 —1 var -1
APz —2 M M08 Pz o A10;61 Pz,

4.5)
”}h[o;a] (Pz_n,ln_‘a‘[ﬂ;ﬁ] (Pz-,n{) -0, n-co.

Moreover, if we put 4, = {z,+cl; ce[0; e]}, then if z, » z, 4, - 4 and in view
of the same definition, we obtain

Aol = degt,
where, for ce(0; ¢),--
94,0 =0, +c)=0.,0(), @40 =0E+c])=@,,(0).
Thus, for W-almost all ze B, we have '
(4.6) lho:61 oo — 051 Pz | > 0, 1> 0.

In the sequel, we need the following result which is a consequenceb of Theo-
rem 5.5 of [2].

LEMMA 4.1. Let h, and h be bounded functions. If P,= P and if
D ={z|V(z,), z, z, hy(z,) ~ h(z)}
is such that P(D) =1, then
{ h,dP,— | hdP.
Here, P,= W, and let us write

h,(z,) = |1 450;8 (Pz_,.,ln—}v[o;ﬂ (pz_,.,lco” and h(z) =0.
But

h,, (Zn) < 'IM[O;J] §0z_,,,1n - 71[0;6] (Pz_olo” + ”j«[o;a] sz_,.,lm - /1[0;-5] Q’z_ci:" .

In view of (4.5) and (4.6), we know that for W-almost all ze B, if z, — z, then
h,(z,) > 0. Thus, W(D)=1 and, in view of Lemma 4.1, we have

§ NAgo; ot — Ao @75l Py (dz) » 0, n— 0.
B B

. (v) For each §€(0; ¢), let us remind that Z (R) is the Banach space of finite

measures on % (R) with the total variation as norm. For ze B, let (z,),.n* be
a sequence such that z,eB and z, —z. In view of (4.6), we have

l|A10:61 @20 — Arose1 Pz0ll > 0, - 1= 0.
That is to say, the mapping
B—>Z(R),
2> X038 P20
is continuous W-a.e. Now, we can apply Theorem 4.2 and the result is
1

Poo™' Zo W0l m

n—a
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4.3. Harris recurrent positive Markov chains. In this section, we shall study
the relations between assumptions of I-regularity and assumptions required for
IP, that is to say, assumption (3) of Theorem 3.1. The following definitions
and results come mainly from [16]. Let & = (¢, )yn* be the m.c. defined in
Section 2.

DEFINITION 4.1. A non-empty set F is said to be transition closed for the
kernel P if P(x, F°) = 0 for all x e F. The chain is indecomposable if there are no
two disjoint transition closed subsets.

We assume -that ¢ is indecomposable. For a measurable set Be # (R) and
an initial state x, hg (x) denotes the probability having starting at x, to visit
B infinitely many times.

DerINITION 4.2. The chain £ is called recurrent with respect to a measure
U on the state space if, for any measurable set B with u(B) > 0, hy (x) > 0 for all
x and hg = 1 except for a certain u-null set. If hy = 1, the chain is said to be
Harris recurrent.

Remark 4.2. If a chain is recurrent with respect to some non-trivial g,
there exists a measure called maximal, which has the least possible collection of
null sets among other measures with respect to which the chain is recurrent
(Proposition 2.4 in [16]). Any stationary measure is maximal by the same
proposition (assuming that the chain is recurrent with respect to some measure).

LEMMA 4.2. If an m.c. is indecomposable and has a stationary probability
measure, then it is recurrent.

Proof. According to Theorem 3.6 of [16], any indecomposable chain is
either dissipative or recurrent. Let us remind that the chain is said to be
dissipative (Definition 3.3 in [16]) if Gg = ZkBOP"g < oo everywhere on the
state space for some measurable strictly positive function g. For a dissipative
chain, such a g can be chosen so that Gg < 1 everywhere on the state space
(Proposition- 3.9 in [16]). Integrating Gg for such a g with respect to the
stationary probability, we come to oo < 1. Hence the chain is recurrent. m

- LemMmA 4.3. The transition kernel x+— P(x, ) is:continuous in variation in
any open interval J, < J.

Proof. Let us remind that J = {xeR | n(x) > 0}. For all Be#(R)
P(x, B)={ p(x, y)dy.
B

Let us put, for ne N*, J, = {xe R | n(x) = 1/n}. Then J, is open because = is
a.c. Moreover, J = | Jnen*J,,. Let x,, X, €J, be such that x, < x,. Then there
exists ne N* such that J, = J, and we have

‘j‘lp(xz,y)—p(xl,y)ldyéf lep;(x,y)ldxdy

R xi1
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< f O (12 dx < ey =, M2 (§ T+ (x) )

x1 Jo
< V2, —x M2 ( [ IT () m(x)dx)'"? < /nlx,—x, "2 ST
Jo
But in view of (2.1) the lemma is proved. m
LemMA 4.4. The set J is transition closed.

Proof Let x,eJ and let A be a set such that AnJ=0 and
P(x,, A) > 0. As a-consequence of Lemma 4.3, we have
St P(-, A) = 1 P(x,, A)
in a neighborhood N of x,, N = J. Then, in view of the stationarity of I, we
have
) = [ n@y)dy= I Jp(x y)m(x)dxdy

|
4
= [ P(x, A)m(x)dx = j' P(x, A)ym(x)dx
1

5 P (%o, 4) I 7 (x)dx =—P(xo, A)II(N).

But N < J; then II(N)> 0 and P(x,, A) > 0. Therefore, I1(4) > 0. On the
other hand, A nJ = @ implies IT (4) = 0, which contradicts the previous asser-
tion. m

According to Proposition 3.13 of [16], for a recurrent chain ¢, there exists
such a transition closed subset H on the state space which has stationary
probability 1 and such that the restriction &|, of ¢ is Harris recurrent. Such an
H is said to be a Harris set. ‘

LeEmMmA 4.5. J is a Harris set for &.

Proof. Let us remind that a function f is said to be harmonic (respec-
tively, superharmonic) for a transition kernel P if Ph = h (respectively, Ph < h).
_Let us prove first that any bounded harmonic function for |5 is a_constant.
Let h be such a harmonic function defined-on J and A< K in J for
a constant K. Set
~ hix) if xelJ,
hx) = {K if x¢J.

But J is transition closed. Then, for all xeJ, P(x, J°) = 0. Let xeJ. We know
that h is harmonic for P on J, so

Ph(x) = I{ K() P (x, dy) = ; R() P (x, dy)

= £ h() P(x, dy) = Ph(x) = h(x) = h(x).
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Let x¢J. Therefore
Ph(x)= [ K(G)P(x,dy) <K | P(x,dy) =K = h(x).
R R

Then F is superharmonic. By Proposition 3.13 of [16], the recurrence of ¢ im-
plies that any superharmonic function is a constant IT-a.e. Hence h is a con-
stant i-a.e. on J. Further, the right-hand side of the identity h = Ph is con-
tinuous (as a function on J) in view of Lemma 4.3 and the boundedness of &.
This allows us to conclude that h is a constant. Consequently, we proved that
any bounded harmonic function for &|; is a constant. According to Theorem
3.8 of [16], this implies that &|j is either dissipative or Harris recurrent. How-
ever, it cannot be dissipative, because of the existence of a stationary probabili-
ty measure (see the proof of Lemma 4.2), which completes the proof. =

Remark 4.3. According to Theorem 5.2 of [16], when the statlonary
measure is finite, the chain is said to be positive recurrent.

Therefore, if ¢ is a stationary homogeneous indecomposable m.c. and if
¢ satisfies (R), (R*), (R7) and (2.1), then ¢ is Harris recurrent positive
on J. Thus, we can apply the IP, that is to say Theorem 3.2, which proves
Corollary 3.1.

4.4. Applications. We can apply Corollary 3.1 to the examples announced
in Section 3.1. Let us remind that S,=0 and, for all keN*,
S, =f(E)+ ... +f(&). Let ne N*; P, is the distribution of {, and W, is the
distribution of the process {ow(z); te[0; 1]}.

ExAMPLE 4.1.
¢,.:C[0; 1]-R,
X @;(x) =x(1).

‘Therefore, P, 1! is the distribution of {,(1) = S,,/ﬁ and W, o' is the
distribution of ow(1), that is to say, .4#°(0, ¢%). Consequently, we have

g(\‘}) L, 40, %), )
n

Remark 4.4. This is a local limit theorem for the chain (f(&))en*-
ExXAMPLE 4.2.

(pZ: C[O; 1] - R,

X > @,(x) = sup x(f).
te[0;1]

1
3(— max Sk) —s $<a sup w(t)).
\/;l 0<k<n " te[0311

Therefore,
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ExAMPLE 4.3.
(103: C[Os 1] i R9

X > @3(x) = sup [x(t)].
te[0;1]
Here we have

g(i max ISkl> = E(a sup |w(t)]>.
\/;1 0<k<n = tef0;1]

—~ 77 5 LOCAL INVARIANCE PRINCIPLE
FOR NON-STATIONARY HOMOGENEQUS MARKOV CHAINS

5.1. Notation and inequality. In this section, we are interested in
a non-stationary homogeneous m.c., that is to say, the initial distribution I is
not the stationary probability distribution II. Let y denote the initial density
assumed to be a.c. and let {p(x, *); xe R} denote the family of transition den-
sities, where for all xe R, p(x, *) is assumed to be a.c. For k > 2, f, is the
density of the r.v. £,. We assume that y > 0 A-a.e. and p > 0 A%2-a.e. We consider
the transition density g;_, for a time-reversed chain. Our regularity assump-
tions are the following:

(R) The family {y(-+¢);teR} is I-regular.

(R™) The family {p(x,); xeR} is I-regular.

(R, For all k> 2, the family {f,(-+1); teR} is I-regular.
(Ry) For all k > 2, the family {g,_,(y,); yeR} is I-regular.

The corresponding Fisher quantities are I (y), I'* (x), I(f;) and I;_ (y). We
assume that for all k> 2 '

6D I'=fI"®)fi-i(x)dx <0 and Iy = [ L_;(») fi(ndy < .
. R R

Let ne N*. Set

L =10+1(R)+15 +13, ;
L=1f)+1(fiv )+ +If +I; +1;7, for all 2<k<n—1,
I =1, +1I +I(f).

Finally, 2¢ and 2, denote the distributions of £+4a and &, respectively.

THEOREM 5.1. If R), (R"), R,), (R;) and (5.1) for all k = 2 are satisfied,
then

(5.2) N2—-2li< |5 Y aily.
k=1

The proof of this inequality is similar to the proof of Theorem 2.1.

N W
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5.2. Local invariance principle. Let us remind that S, = 0 and, for all
keN*, S, =f(&)+ ... +f(&). The polygonal process {, is defined for all
we® and all te[0; 1] by

1
()= 7—; [Spra(@)+ (e — [nt]) f (€ + 1 (@))] -

Here, Q, denote the distribution of {,. As in Section 3.2, we can announce
a local invariance principle.

THEOREM 5.2. If the_following assumptions are satisfied:

(1) B), R"), R, Ry) and (5.1) for all k>2;

(2) there exist 6 >0 and M >0 such that, for all xeR, f'(x) = 6 and
" ()| < M; '

(3) Q,=W,_ for some constant o > 0;

4) pedty,
then

Q.0 ' o Wt

The proof is the same as the proof of Theorem 3.1. We can write an

inequality for the total variation between the distributions of the vectors

(f (s ..., f(&Y) and (f (&) +ay, ..., f(&,)+a,). Then this inequality is used
when we establish assumption (iii) of Theorem 4.2.

5.3. Harris recurrent positive Markov chains. Here, ¢ is a Harris recurrent
positive m.c., I' denotes the initial probability distribution, II is the stationary
probability distribution. We use the subscript I' if I' is the initial probability
distribution and we omit it if IT is the initial probability distribution. The
distribution of {, is P, or Q, if the initial probability distribution is IT or T,
respectively. In view of Theorem 3.2, we know that P, = W,.

THEOREM 5.3. If ¢ is Harris recurrent positive and if fe I? (R, II) satisfies
(C),-then .
0,=W,.

-.Proof. The idea of the proof comes from the method used by Billingsley
in [1] and [2], but also from a method used by Gizbrekht in [7]. In view of [1],
there exists a sequence of natural integers (k,),ey+ going to infinity so slowly
that for all ¢>0

(5.3) lim P{max|S,| = sﬁ} =0 and lim P, {max|S,| > sﬁ} =0.
n— oo k<kn n— o k<kn

Let {, be the following process defined for all te[0; 1] by

if 0<t<k,/n,

, o
L= {g,, =S,/ /n i k/n<t<l.
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We denote by P, and @, the distributions of {; when the initial probability
distribution is II and I', respectively. Set

5n= sup |§n(t)_£::l(t)'

oxt<1

It is clear that
1
0, € —= max|S,|,

" \/ﬁ kS kn
that is, by (5.3) we have
7 lim P{5,>& =0 and lim P.{5,>¢ =0.

n—>ow

Moreover, the total variation is

WP7— Qall = 1Pt 10vnenn @) — Qs iEion s 0revn sl

= 1Py s 10ennrm) = Qi 1005

where P, ., ., (tespectively, Qc, . ,,..e,)is the distribution of (&, +1, ..., £,)
when the initial probability distribution is II (respectively I'). Conse-
quently,

l1Pn—Qull = _f [T (d%x+ 1) P (X + 15 QX 42) -« P(Xn—1, dx;)

R" kn
—FPk"H’(dxan)P(xk,.ﬂa dxy,+2) ..o P(Xp_1, dx,)|,

where I'P¥*1 is the distribution of &, ., when I' is the initial probability
distribution. Therefore

IPn—Qull = [ |II(dx)—I'P¥*1(dx)| = \IT—TP**||.
R

But, in view of Theorem 2.2 of [16] and the definition of J, we know that & is
- aperiodic. In view of Corollary 6.7 of [16], if £ is aperiodic Harris recurrent
positive, then for all initial probability distributions I we have

lim ||[CP"—II| = 0. .
Therefore
lim ||P,—@sll = 0.
By Theorem 4.1 of [2], we obtain
P,=W,

=P,=W,.
S f-mem

Moreover, ||P,— Q|| = 0, n— oo, so @, = W,. Applying Theorem 4.1 of [1],
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we have
Q. =W,
5 %0

n

b0,

This completes the proof of Theorem 5.3. m
Finally, we obtain a corollary using Theorems 5.2 and 5.3.

CoROLLARY 5.1. If the following assumptions are satisfied:

(1) R), RY), (R,), (Ry) and (5.1) for all k> 2;

(2) feZ(R, II) and there exist 6 >0 and M > 0 such that, for all xeR
f'(x)=é and If" (x)| < M, and f satisfies (C) with ¢* > 0;

(3) & is indecomposable;

(@) pe My,

then Qo ' TEo W0
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