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Abstract. We consider stationary homogeneous Markov chains 
and the polygonal processes defined by a usual way using such chains. 
There are many results about invariance principles of those processes. 
In this paper, we prove that under additional conditions, a stronger 
assertion (in some sense) is true. Indeed, we establish the convergence 
in variation for the distributions of the functionals of such a process, 
that is a Iocal invariance principle. We study also the particular case of 
positive Harris recurrent Markov chains. Finally, we prove that the 
invariance principle and the local invariance principle remain valid 
when the initial chain is homogeneous but not stationary. 

1. INTRODUCTION 

The origin of this paper is work done by Y. A. Davydov, who proved 
a local invariance principle (IP) for a sequence of independent and identically 
distributed random variables (i.i.d.r.v.3). The method used by Y. A. Davydov 
consists at first in estimation of the total variation (denoted by I I . I I )  between the 
distribution of a sequence of i.i.d.r.v.'s and its translate. 

-Indeed, let 5 = (&J,,* be a sequence of i.i.d.r.v.'s defined on some proba- 
bility space (8, d ,  P) and taking values in (R, g ( R ) ,  A),  where B(R)  is the 
o-field of Bore1 subsets of R, and II  is the Lebesgue measure. For all k E N Y ,  the 
r.v. tk has the density p, assumed to be absoIutely continuous (a.c.). Let I @ )  
denote the Fisher quantity associated with p, defined by 

Let a = (a,),,,. be a real sequence and n E W .  We denote by 9, and BP, 
the distributions of the vector = ( 5 :  . . . , ) and its translate - 
5: + c i  = (tl +a1, . . ., 5. +a,), respectively. In this case, if I  (p) < oo, we obtain 
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Then, using (1.1), Y. A. Davydov proved a locaI IP for the stochastic 
functionals in the IP of Donsker-Prokhorov. Here, the sequence ( is such that, 
for all k E W ,  E(&) = 0 and Var (t,) = o2 < CO. Let us put So = 0 and, for all 
k E W ,  Sk = t1 + . , . + tk. Let n E W .  We can construct the polygonal process 
5, defined for all t E [O; 11 and all w €0 by 

where [ x ]  is the integer part of x. Let P ,  denote the distribution of 5,. The IP  of 
Donslcer-Prokhorov ([2], Theorem 10.1) states that P, = W, where W is the 
measurebof the Wiener process ( w ( t ) ;  t~ [O; I]), and * is the notation for the 
weak convergence. Let C[O; 11 denote the space of continuous functions on 
10; 11. Thus, if q~ is a functional defined on C[O; 11, W-almost everywhere (a.e.1 
continuous, we have 

P,  p-I  =. w q l .  
Then Y. A. Davydov proved, by imposing more stringent conditions on 

the common distribution of the r.v. e, and by restricting the class of functionals, 
that it is possible to obtain a stronger assertion, that is to say 

Pncp- l  * wq-I. 
The aim of this paper is to use the same method to show a local IP for 

stationary (or not) homogeneous Markov chains (m.c.'s). 

2. NOTATION AND INEQUALITY 

Let = (&)kNt be a stationary homogeneous m.c., defined on (51, d l  P) 
and taking values in (R, B(R) ,  A). Let I7 denote its stationary probability 
distribution with density n assumed to be a.c. and let P denote the probability 
.transition kernel with the family of transition densities ( p  (x, .); x E R )  . For all 
x E R ,  we suppose that p (x, .) is a.c. The quantity n' is the derivative of z, and 
p:, pi are the partial derivatives of p. 

Let us denote by q the transition density for a time-reversed (with respect 
to IT) chain. This transition density is given by 

Now, let us give the following notion of I-regularity defined by Ibragimov 
and Has'minskii in [12]. 

DEFINITION 2.1. Let 0 E R  be an open set. The family {p(-, 8); 8~0) of 
probability densities is said to be I-regular (or information regular) if the map 
from 0 to I? (R, A), sending 0 E 0 to (-, O), is continuously differentiable (in 
the sense of standard Hilbert norms on R and I? (R, 1)). 
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Remark  2.1. This implies that, for all %E 0, 

a 
- P1j2{-, O)EL? (R, A). as 

Let us denote by I(8) the Fisher quantity defined by 

Here, I ( 0 )  can also be written in its usual form: 

So, our regularity assumptions are the followit?g: 

(R) The family (7c (. + t); t E R)  is I-regular. 

The corresponding Fisher quantity does not depend on r and can be 
written as 

Set J = { x ~ R I x ( x )  > 0 ) .  

(R+) The family ( p  ( x ,  a); x  E J )  is I-regular. 

We denote by I + ( x )  the corresponding Fisher quantity defined for x E J as 

(R-) The family { q  ( y ,  a); y E J )  is I-regular. 

We denote by I - ( y )  the corresponding Fisher quantity defined for y E J as 

Moreover, we suppose that 
- 

(2.1) I f = [ I + ( x ) n ( x ) d x < c x ,  and I - = J I - ( y ) n ( y ) d y < m .  
.I J 

Let us put I  = I (n )+ l f  + I - .  Finally, let a = (a&,@ be a.real sequence. 
As in Section 1, we denote by 8, and 9; the distributions of the vectors and 
c+ ti, respectively. 

THEOREM 2.1. If @), (Rf ), (R-) and (2.1) are satisJied, then 
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Remark 2,2, This theorem is proved in [15]. Moreover, other inequali- 
ties and applications are presented, in particular in the case of a sequence of 
i.i.d.r.v.'s and a random translation. In fact, all those inequalities allow us to 
prove absolute continuity between a sequence and its translate. 

3. LOCAL INVARIANCE PRINCIPLE 
FOR STATIONARY HOMOGENEOUS MARKOV CHAlNS 

Let f be a real-valued function defined on R.  Let So = O and, for all k~ W ,  
S,  = f ({,)+- . . . + f Itk). Let n E  Ng. Then the process C, is defined for all 
t E [O; 11 and for all w E O by 

1  
(3.1) 5. (ty a) = - [S~nr]  (4 + (nt- Cntl) f (t,,,, + 1 Id)] . 

J;; 
As before, Pn is the distribution of C,. First, we define a new class of 

functionals smaller than C [O; 11. Then, if cp belongs to this class and if we have 
the weak convergence for P,, we prove the convergence in variation. Finally, 
we apply this resuIt to the Harris recurrent positive m.c. 

3.1. Definition of t b  class A',. We can find the notions introduced here in 
Sections 13 and 14 in [ 5 ] .  Let (X, Bx, P) be a complete separable metric space. 
Each element 6 of X generates a group of shifts G' = {G:; CER) with 
G: (x) = x + cI for x E X. 

D m n o ~ 3 . 1 .  A vector I is an admissible shqt for P if 
P' = P(G;) - l  @ P. Moreover, 1 defines an admissible direction for P if P' < P 
for all CER. The set of all vectors defining admissible directions for P will be 
denoted by H,. 

The set A = (x + cl; c E [a, b]) , x, 1 E X, a, b ER, is called a segment paral- 
lel to the vector 1. In this case, we use the notation AIlE. The segments 
4,  = (x, +cl,; c E [a,; b,])  converge to A if x, + x, I, -, I, an + a and b, + b 
(we use the notation A ,  -, A). Finally, for a segment A and a real-valued func- 
tional rp defined on X, we set for all c ~ [ a ;  b] 

- 
rp*(c) = q(x+cO. 

D m n o ~  3.2. We say that the functional rp belongs to the class 
A ( x ,  1, (I,)), where x, 1 EX and 1, + I, if there exists a neighborhood V 
of the point x such that for P-almost all Y E  V and any segment 
A =  (x+cl;c~[a;b]),  A c K 

D ~ T I O N  3.3. We say that rp belongs to the class AP if for P-almost all 
x EX there is a vector E E  Hp such that q E JY (x, I, (I,)) for any sequence (I,) 
converging to I. 
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In the following, we are especially interested in the class A,. Let X be the 
space C[O; 11, and P be the Wiener measure W. 

Remark  3.1. We know that 

Hw = (IEC[O; I] I 1 ax., 1(0) = 0 and ~'E@([o; I])). 

Remark  3.2. The classes MP and A, are very large. For exampIe, we 
can assume that X is a separable Banach space. We denote by X* the dual 
space to X equipped with the weak*-topology, and by (-, -) we denote the 
bilinear form expressing the duality of X and X*. We say that a functional q is 
c o n t i n u o u s l ~ ~ r i c h t  difiersntiable in a region G r X if the mapping x D ~ J  (x) 
from G to X* is continuous in the weak*-topology. If we suppose that for 
P-almost all x there exists a neighborhood F/, of the point x in which cp is 
continuously Frkhet differentiable and if Df (x) (Hp)  # {0}, then q~ E M, ( [ 5 ] ,  
Theorem 13.7). 

Now, we cite some examples of functionals which belong to A,. 

EWLE 3.1. Assume that there exists to€  [O; 11. The following func- 
tional belongs to A',: 

rpl: C[O; 11 +R, 

x- v1I4 = x(t0) .  

EXAMPLE 3.2. The following functional belongs to A,: 

x H cp2 (x) = sup x (t). 
t€[O; 11 

EXAMPLE 3.3. The following functional belongs to A,: 

EXAMPLE 3.4. Let us consider the following integral functional: 
- 

where p is a finite measure on LB (C [O; I]) and q is some measurable function 
on R. In view of Theorem 14.4 of [ 5 ] ,  if we suppose that for all r > 0 there 
exists an open interval 3 c (-E;  E )  on which q' is continuous and non-zero, 
then ( P ~ E  dW. 

Remark  3.3. Assume that there exists a > 0. Let W, denote the dis- 
tribution of the process {ow (t); t E [O; I]). It  is clear that Atwo and A, are 
the same. 
6 - PAMS 19.1 
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Other examples of functionals which belong to A!, or, more generally, to 
dP are available in [5 ]  and [6].  

3.2. Local invariance principle. The polygonal process c,, is defined at the 
beginning of this section by (3.1) and the distribution of (, is P,. 

THEOREM 3.1.  If the following assumptions are satisfied: 
(1) (31, (W+), 0 - 1  and (2.1); 
(2) there exist 6 > 0 and M 2 0 such that, f i r  all XER,  f (x) 2 S and 

If" (x) l G M ;  
(4- P,, - W, for some constant u > 0 ;  

- (4) V ~ & w r  
then 

Remark  3.4. We shall see in the following section that if we add more 
assumptions on the m.c. ( and on the function f, then there exists an IP for the 
process c,, that is to say that assumption (3) will hold true for some constant a. 

3.3. Harris recurrent positive Markov chains. Now, let us remind IF  for 
m.c. There are different versions of the central limit theorem (CLT) and IP for 
m.c. Some of them are stated in terms of distribution of some return times or in 
terms of some auxiliary objects like "atoms" (see, for example, Theorem 7.6 in 
[14]), We prefer here the approach based on solvability of an equation in the 
Hilbert space LZ(J, n) with respect to the stationary probability distribution I I .  
Gordin proved a CLT for general stationary sequences in [ S ] .  Then, IP for 
general stationary processes was proved in [9]. Later, in [ lo ] ,  this approach 
was specialized to prove the CLT for general stationary m.c. A bit of time later, 
under the same assumptions, the IP was announced in [ i l l .  In the same way, 
IP was proved in 1131 for Harris recurrent positive m.c. Since we are going to 
restrict ourselves to this case of rn.c., 1131 can be considered as one of appro- 
. priate references. However, Maigret [ 1 3 ]  considers also functions on the path 
space of the chain which depend on two successive values of the chain. Here, 
we restrict ourselves to functions depending on the current state of the chain 
only. - 

Let 5 be a stationary homogeneous Harris recurrent m.c. on J with sta- 
tionary probability distribution I7. Let f be a function which belongs to 
Jl? V, n) such that 

(C) Pf = P g - g  with some g ~ P ( J , l l ) .  

Remark  3.5. Representation (C) for afunction Pf is possible if and only 
iff can be represented in the same form: 

(C') f = Ph- h with some h E E  ( J ,  17). 

Re m a r k  3.6. Let us observe that J J  f (x) (ax) = 0  is an obvious neces- 
sary condition of the solvability of equation (C). 
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Let us put 

GlJ, n)= { f ~ f i ( J ,  IT)  I j f ( x ) n ( d x )  = 0 ) .  
J 

Remark  3.7. Equation (C) has a measurable solution for any 
f E z-, ( J ,  n). This is noticed in [13] and follows from Theorem 5.1 of [14] .  
Moreover, if lPfl is a so-called special function (see [14] and [16] )  and if 
f E Li ( J ,  n ) ,  then we have Pf = Pg - g with g E Lm (J, 17), which is the space of 
measurable bounded functions. 

The assumption in the form (C) has some advantages for a Harris recur- 
rent m.c, because Pf can be a "better" function than f, On the other hand, the 
formula for the limiting variance Iooks simpler having been written in terms of 
h from (C'). 

Let us denote by 1 1  1 1 ,  the norm itl L2 ( J ,  L!). 
THEOREM 3.2. If 4: is a Harris recurrent positive m.c. and f E L? ( J ,  II) 

satisfies (C) ,  then 

P" * w,, 
where aZ = Ils-fllI-IIPCf-s)ll: = Ilhll;-IIPhll;. 

This theorem is a compilation of results in [10] ,  [ i l l  and [13] .  We 
shall see that assumption (3) of Theorem 3.1 is satisfied with this con- 
stant a. 

Then the previous result and Theorem 3.1 allow us to give the following 
corollary. 

COROLLARY 3.1. If the following assumptions are satisfied: 
(1 )  @I, @+I, (R-) and (2.1); 
(2) f E L2 ( J ,  IT) and there exist 6 > 0 and M 2 0 such that, for all x E R, 

f' ( x )  2 6 and If" (x)! 6 M and f satisfies (C)  (or (C')), with 

--(4) IP E A W ,  
then 

Remark  3.8. In Theorem 3.2, that is to say for the weak convergence, we 
have not to assume that g2 > 0 ,  but this is necessary in the previous corollary 
for strong convergence. 

Remark  3.9. We shall see in the following section that assumptions (1)  
and (3 )  allow us to conclude that the m.c. 5 is Harris recurrent positive on 3. 
Using this and assumption (C), we have the IP (Theorem 3.2) and assumption 
(3)  of Theorem 3.1 is satisfied. 
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4. PROOFS 

First, using Theorem 2.1, we prove another inequality. Then we prove the 
local IF, that is to say Theorem 3.1. Finally, we study the case of Harris 
recurrent positive m.c. 

4.1. Inequality. In Theorem 2.1, we have an inequality for total variation 
between the distribution P, of (t,, ..., c.J and the distribution 8: of 
(11 +a,, . . ., ln + a,). In the following, we shall estimate the total variation 
between the distribution of Cf(tl), ..., f (S,),! and the distribution of 
Cf(S.J +a,, .: .; f ([.]'tan) denoted by 4, and Bi, respectively. 

. 

b 

THEOREM 4.1, Let f: R + R satisfy the following assumptions: 
(i) there exists 6 > 0 such that, for all X E R ,  f ' ( x )  2 8; 

(ii) there exists M 2 0 such that, for all x E R, r" ($1 < M. 
If (R), @+), (R-) and (2.1) are satisfied, then 

(4.1) . I 6 f l  - 1 
2M2 

where 1 = - I +  - 
d2 8' ' 

Remark  4.1. In view of assumptions, it is clear that: f <  cc 
Proof, f is a bijection (strictly increasing) on R. Therefore, df((,)),,,* 

remains a stationary homogeneous m.c. Let fi denote the stationary probabili- 
ty distribution defined by the density 

Moreover, let (0 (u, -); u ER) denote the family of transition densities defined 
by 

'In view of (i) and (ii), we can prove that 5 and @(u, .) for all U E R  are a.c. Let 
(ij (0, .); v E R) denote the transition densities for a time-reversed chain. Those 
transition densities are given by - 

We shall estimate the following total variation: 
n " " 

1 1 ~ ~ - ~ , 1 1  = j /5(u,+al) n #(~k-l+ak-l ,  ,,+a,) 
R" k =  2 

n 

-s(ul) n $(uk-l, U ~ I I ~ G .  
k =  2 

We can apply inequality (2.2) to the m.c. Cf(C,)),,*. For this, we calculate I(s) ,  
1' and f-. In view of (i) and (ii) and using (a-b)' < 2a2+2b2, 
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we obtain 

In the same way, we obtain 

In view of (4.2)-(4.4), we have the announced result. r 

4.2. Proof of Theorern 3.1. The idea of the proof is to use inequality (4.1) 
and a local limit theorem for functionals of random processes (Theorem 1 in 
[3]). Indeed, we consider a sequence of probability measures (P,),,,* defined 
on the a-algebra ax of Bore1 subsets of a complete separable metric space 
(X, Q). Let Z(X) denote the Banach space of finite measures on Bx with the 
total variation as norm. The restriction of the Lebesgue measure to B' ([a; b]) i s  
Aca;bl. Let cp be a measurable mapping from X to R or, briefly, a functional. 
Theorem 1 of [3] is the following 

THEOREM 4.2. Suppose that P, 5 P, and, for P,-almost all x ,  there exists 
an open ball 3 with center at x ,  a number E > 0 ,  and (G,,,; c ~ ( 0 ;  81; n E W )  
a family of transformations of X such that 

(i) for each c ~ ( 0 ;  E ) ,  G,,, x -, G,,, x, n + CO, in measure Pn; 
(ii) G , ,  is continuous for each c E (0; E )  and for each baII S ,  

d ( S ,  c) = sup Q (2, G,,) + 0, c + 0 ;  
ZES 

(iii) lime+, lim sup 1 1  Pn G c 2  - Pnl 1 = 0 ;  
(iv) for each 6 E (0; E) ,  

where VZ,, (c) = cp ( G c , ~  (z)), C E (0; E ]  , n E w;  
(v) for each 6 ~ ( 0 ;  E), the mapping 

z ++ A[*;&, (~2 3 

is continuous P,-a.e. 
Then 

P, ~ p - l  a'-f n -t m P, q3-l. 
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In our case, X = CEO; 11 is a complete separable metric space and the 
distance g is defined for f, g E C [O; 11 by 

eV; 9) = SUP If(t)-a(tll. 
tE[O; l] 

In view of assumption (3) of Theorem 3.1, we have P, = W,. Let ~ E W .  We 
denote by F, the space of polygonal lines constructed on the points 
(kin, x(k/n)) for all 0 < k < n and all xcC[O; 11. Therefore, F, has a finite 
dimension and P, is concentrated on F,. Let B, denote the mapping from 
CEO; 11-to Fn; which-to all points x assigns the polygonal line constructed on 
the points (kin, x (k/n) for all 0 < k d n . 

Let cp be a functional which belongs to M,. Let X ,  denote the set con- 
sidered in the definition of the class A,, that is to say W (X,) = 1. Let x E X, . 
Then there exists I E H ~  and a neighborhood V of x such that for W-almost all 
y E V and any segment A = (y  + el; c E [a; b ] )  c V :  

for any (1,) converging to I .  Therefore, 1 and V are fixed by the previous defini- 
tion. Let us choose an open ball 3 with center at x such that 3 c V and let us 
choose E > 0 such that, for W-almost all YE V, any segment A = {yfcl; 
CE LO; E ] }  c V. For all c E LO; E] and all Y E  B, we put 

GC,,y=y+cnn(1) and G, ,y=y+cl .  

The aim is now to establish five assumptions of Theorem 4.2. 
(i) For each CE(O; E): 

Gc,,x=x+cll,(E) and Gc,,x=x+cl. 

But 27,(1) -, 1 when a 4 GO. Consequently, G,, x -+ G,,, x in measure P,. 
(ii) For each c ~ ( 0 ;  E), G,,, y = y+c1 is continuous. For each ball S, we 

have 

d ( S ,  c) = sup e(z, G,,,z)=c sup ]l(t)l+O, c-0. - 
ZES te[O; 11 

(iii) Let T, be the mapping from F ,  to Rn, which to all polygonal 
lines constructed on the points (k/n, x,) assigns (&xl, &(r,-x,), ..., 
&(xM -x,)). Then T, is linear bijective. Let us remind that T, is the poly- 
gonal line constructed on the points (kin, ski,,&). Therefore 

and P, T,- l = @, . Moreover, [, + c17, (1) is the polygonal line constructed on 
the points (k/n, SJ&+ cl(k/n)). Let us remind that So = 0 et l(0) = 0 because 
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I E H,. Consequently, 

If we put for all O <  k < n - 1  

then 

T,(cn+cn,(Ef) = Cf(t,)+ca,, ... ,f(C,)+ca,). - 7 .  
-- . 

But S ,  +cnn GI) = Gc,. l,. Then P, G z  T,- = e. Finally, we have 

In view of assumptions (I) et (2) of Theorem 3.1, we can apply Theorem 4.1 and 
inequality (4.1) and we obtain 

But 

Therefore, we have 

In view of Remarks 3.1 and 4.1, we know that f < and ~ ' E I ?  (10; 11). Con- 
sequently, we can conclude that 

lim limsup llP,G;;-P,ll = 0. 
c+o 

'(iv) For each 6 ~ ( 0 ;  E), for all e ~ ( 0 ;  E], and a1 Z E  B, we have 

We know that, for W-almost all z E B, A = {Z +cI; c f [O; E]) c V. Let 
us put 

A n  ={~n+~nn( l ) ;  ~ € 1 0 ;  EI)IIIT,(~). 

We have II, (I) + 1. If z ,  + z, then A, + A .  Therefore, in view of the definition of 
the class A,, we obtain 

@in1 5 A ( o i  I, 

where, for c E (0; E), 
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Therefore, for W-almost all z E B, we have 
- 1 var 40:*] qz,,n &;al q ~ k ,  

Moreover, if we put A, = {z, +el; c E [O; E]), then if z, -+ z, A, -, A and in view 
of the same definition, we obtain 

bCp.4" (') = Cp (z, +cz) = q z n , m  (c), (PA (c) = = (Z + CZ) = (c). 

Thus, for W-almost all Z E B ,  we have 

In the sequel, we. need the following result which is a consequence of Theo- 
rem 5.5 of [2j. 

LEMMA 4.1. Let hn and h be bounded functions. If P,*P and if 

D = fz 1 bJ (z,), Z, + Z, h,(z,) --, h(z)l 

is such that P ( D )  = 1, then 
s ~ J P ,  + j  h d ~ .  

Here, P ,  =. W, and let us write 

h, (2,) = I laro;al c p ~ i  - L[o;a1 cp,,', l l  and h (2) = 0. 
But 

hn (2,) II~o;, r ~ i , :  -40;al Y ~ A I I  + I I L [ o ; ~  qi,lm - A[o;d1 ( P ~ ~ I I .  
In view of (4.5) and (4.61, we know that for W-almost a11 z E 3, if z, -, z, then 
hn(z,) + 0. Thus, W (D) = 1 and, in view of Lemma 4.1, we have 

(v) For each 6 E (0; E), let US remind that Z (R) is the Banach space of finite 
measures on S? (R) with the total variation as norm. For z E 3 ,  let (z,),,~* be 
a sequence such that Z,EB and z, + z. In view of (4.6), we have 

Il4o;a VL,'~ -4o;ai  VZ,AII + 0, n + 

That is to say, the mapping 

B + Z ( R ) ,  

z A[o;al cpi: , 
is continuous W-a.e. Now, we can apply Theorem 4.2 and the result is 
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4.3. Harris recurrent positive Markov chains. In this section, we shall study 
the relations between assumptions of I-regularity and assumptions required for 
IP, that is to say, assumption (3) of Theorem 3.1. The following definitions 
and results come mainly from [16]. Let 5 = be the m.c. defined in 
Section 2. 

DEFINITION 4.1. A non-empty set F is said to be transition closed for the 
kernel P if P (x, Fc) = O for all x E P .  The chain is indecomposable if there are no 
two disjoint transition closed subsets. , . 

We asmme =that is indecomposable. For a measurable set 3 E a (R) and 
an initial state x, h; (x) denotes the probability having starting at x, to visit 
B infinitely many times. 

DEFINITION 4.2. The chain 5 is called recurrent with respect to a measure 
p on the state space if, for any measurable set B with p (B)  > 0, h," ( x )  > 0 for all 
x and h," = 1 except for a certain p-null set. If h," = 1 ,  the chain is said to be 
Harris recurrent. 

Remark  4.2. If a chain is recurrent with respect to some non-trivial p, 
there exists a measure called maximal, which has the least possible collection of 
nu11 sets among other measures with respect to which the chain is recurrent 
(Proposition 2.4 in [16]). Any stationary measure is maximal by the same 
proposition (assuming that the chain is recurrent with respect to some measure). 

LEMMA 4.2. If an m.c. is indecomposable and has a stationary probability 
measure, then it is recurrent. 

Proof.  According to Theorem 3.6 of [16], any indecomposable chain is 
either dissipative or recurrent. Let us remind that the chain is said to be 
dissipative (Definition 3.3 in 1161) if Gg = x,,, Pkg < oo everywhere on the 
state space for some measurable strictly positive function g. For a dissipative 
chain, such a g can be chosen so that Gg < 1 everywhere on the state space 
(Proposition 3.9 in [16]). Integrating Gg for such a g with respect to the 
stationary probability, we come to CQ < 1. Hence the chain is recurrent. 

LEMMA 4.3. The transition kernel x w P(x, .) is- continuous in uariation - in 
any' open interval J ,  G J. 

Proof .  Let us remind that J = {XER I n(x) > 0). For all B E B ( R )  

Let us put, for nE W ,  J, = {x E R 1 R (x) 2 l / n ) .  Then 3, is open because R is 
a.c. Moreover, J = UnGN*J;I. Let x,, X , E J ~  be such that x ,  < x2. Then there 
exists  EN* such that J ,  c J ,  and we have 
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4 c-'12 I x ~ - x ~ ~ ~ I ~  ( I  It (~ )n (x )dx )"~  G & ( x ~ - x ~ I ~ ~ ~  f i .  
J o  

But in view of (2.1) the lemma is proved. 

LEMMA 4.4. The set J is transition closed. 

Proof.  Let ~ ~ € 3  and let A be a set such that A n J = 0  and 
P (x,, A) > 0. .As a -consequence of Lemma 4.3, we have 

b 

P ( ' ,  A) 2 i!P(x,, A)  

in a neighborhood N of x,, N G J. Then, in view of the stationarity of IT, we 
have 

n(A) = j nCy)dy = 1 j P(X, Y ) ~ ( x ) ~ x ~ Y  
A A J  

But N G 3; then 17 (N) > 0 and P (x,, A) > 0. Therefore, n (A) > 0. On the 
other hand, A n J = 0 implies n(A) = 0, which contradicts the previous asser- 
tion. 

According to Proposition 3.13 of [16], for a recurrent chain 5, there exists 
such a transition closed subset H on the state space which has stationary 
probability 1 and such that the restriction ll, of ( is Harris recurrent. Such an 
H is said to be a Harris set. 

LEMMA 4.5. J is a Harris set for 5. 
Proof .  Let us remind that a function f is said to be harmonic (respec- 

tively, superharmonic) for a transition kernel P if Ph = h (respectively, Ph < h). 
Let us prove first that any bounded harmonic function for ti, is a-constant. 

Let h be such a harmonic function defined on J and h =S K in J  for 
a constant K. Set 

But J is transition closed. Then, for all X E  J ,  P(x, Jc)  = 0. Let X E  J. We know 
that h is harmonic for P on J, so 

= [ h (y) P (x, dy) = Ph (x) = h(x) = h"(x). 
J 
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I'K(x) = j ~ ( ~ I ) P ( x ,  dy)  4 K I P ( x ,  d y )  = K = &x). 
R R 

Then h"is superharmonic. By Proposition 3.13 of [16], the recurrence of { im- 
plies that any superharmonic function is a constant I7-a.e. Hence h is a con- 
stant A-a.e. on 3. Further, the right-hand side of the identity h = Ph is con- 
tinuous {as a function on J )  in view of Lemma 4.3 and the boundedness of h. 
This allows us to conclude that h is a constant. Consequently, we proved that 
any bound4 hamolic  function for tI, is a constant. According to Theorem 
3.8 of [16], this implies that ti, is either dissipative or Harris recurrent. How- 
ever, it cannot be dissipative, because of the existence of a stationary probabili- 
ty measure (see the proof of Lemma 4.21, which completes the proof, a 

Remark 4.3. According to Theorem 5.2 of [16], when the stationary 
measure is finite, the chain is said to be positive recurrent. 

Therefore, if { is a stationary homogeneous indecomposable m.c. and if 
satisfies @), (R'), (R-) and (2.1), then < is Harris recurrent positive 

on J .  Thus, we can apply the IP, that is to say Theorem 3.2, which proves 
Corollary 3.1. 

4.4. Applications. We can apply Corollary 3.1 to the examples announced 
in Section 3.1. Let us remind that So = 0 and, for all ~ E N Y ,  
Sk = f ( t i )  + . . . + f (&). Let n E N*; P, is the distribution of 5, and W, is the 
distribution of the process (aw(t); t E [O; 11). 

Therefore, P,, q; is the distribution of in (1) = SJ& and W, q; is the 
distribution of crw(l), that is to say, N(0,  a2). Consequently, we have 

Remark  4.4.  his is a local limit theorem for the chain ( f ( t k ) ) k s N * .  

X H q2 (x) = SUP x (t). 
f € [ o ; l ]  

Therefore, 

9 - max Sk 5 9 i~ sup w ( t)  . (; 0 < k G n  ) ( te[O ;I] 1 
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x t-, (P3 (JC) = SUP Ix (t)l. 
te[O; 11 

Here we have 

.- . , - 5. LOCAL W A R L W C E  PRINCIPLE 
F ~ R  NON-STATIONARY H O M O G E ~ O U S  m o v  cmms 

5.1. Notation and inequality. In this section, we are interested in 
a non-stationary homogeneous m.c., that is to say, the initial distribution r is 
not the stationary probability bstribution I7. Let y denote the initial density 
assumed to be ax. and let { p  (x, .); x E R )  denote the family of transition den- 
sities, where for all x ER ,  p(x,  *)  is assumed to be a.c. For k > 2, f, is the 
density of the r.v. e,. We assume that y 3 0 ka.e. and p > 0 L2-a.e. We consider 
the transition density q,- for a time-reversed chain. Our regularity assurnp- 
tions are the following: 

(R) The family {y (- + t);  t E R) is I-regular. 

(R') The family {p (x, -); x E R) is I-regular. 

(ak) For all k 2 2, the family {f,(.+t); ~ E R )  is I-regular. 

(R,) For all k 2 2, the family {qk - (y , a); y E R) is I-regular. 

The corresponding Fisher quantities are I (y), I+ (x), I (J& and 1:- (y). We 
assume that for all k 2 2 

(5.1) I k + = l I + ( ~ ) f k - ~ ( x ) d ~ < W  and I , = l l , l ( y ) f k ( y ) d y < ~ .  
R R 

Let ~ E W .  Set 

Il = I(y)+I(f,)+Iz+ +IT ,  

1, = ICfR)+I&+l)+Ik++Ik++l+I;+~,+l for all 2 d k < n-1, 

Finally, I: and 9, denote the distributions of c+ii and c, respectively. 

THEOREM 5.1. If (R), (It'), (Rh, (Rk) and (5.1) for all k 2 2 are satisjied, 
then 

The proof of this inequality is similar to the proof of Theorem 2.1. 
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12. Local invariance principle. Let us remind that So = 0 and, for all 
k ~ l V r ,  Sk = f ((,)+ . . . f f (t3. The polygonal process 5, is defined for all 
O E W  and all t ~ [ O ; l ]  by 

Here, Q, denote the distribution of 5,. As in Section 3.2, we can announce 
a local invariance principle. 

THEOREM 5.2.  I f  the-following assumptions are satisfied: 
(1) @),@'I, @,I, (K) and (5.1) for all k 3 2; 
(2) there exist 6 > 0 and 1M 3 0 such that, for all x E R, f'(x) 2 S and 

If"(x)l < M ;  
(3) Q, * W, for some constant CJ > 0 ;  
(4) v ~ d w ,  

then 
Q,, a'-, w0 q-l. 

n + o o  

The proof is the same as the proof of Theorem 3.1. We can write an 
inequality for the total variation between the distributions of the vectors 
(f (ti), . . . , f (&,I) and (f (c,) + a,,  . . . , f (5,) + a,). Then this inequality is used 
when we establish assumption (iii) of Theorem 4.2. 

5.3. Harris recurrent positive Markov chains. Here, 5 is a Harris recurrent 
positive m.c., r denotes the initial probability distribution, Il is the stationary 
probability distribution. We use the subscript r if r is the initial probability 
distribution and we omit it if 27 is the initial probability distribution. The 
distribution of 5, is P, or Q, if the initial probability distribution is il or r ,  
respectively. In view of Theorem 3.2, we know that P, = W,. 

THEOREM 5.3. If is Harris recurrent positive and if  EL? (R ,  l7) satisfies 
(C),  - then 

en=. JK. 
P r o  of. The idea of the proof comes from the method used by Billingsley 

in [I] and [2], but also from a method used by Gizbrekht in [7]. In view of [I], 
there exists a sequence of natural integers (k,),,. going to infinity so slowly 
that for all E > 0 

(5.3) lim P {max lSkI e &] = 0 and lim P, {max lS,J 2 e $1 = 0. 
n-m k<k, n+m k s k ,  

Let c, be the following process defined for all t E [O; I] by 
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We denote by PA and QL the distributions of when the initial probability 
distribution is 17 and r, respectively. Set 

6, = SUP 1Cn(tI-lb(t)la 
0<1<1 

It is clear that 
1 

6, d - max ISkI, Jn k S k "  

that is, by (5.3) we have 
7 .  

l i m P ( 6 , > ~ ) = 0  and l i rnP,{6,2&)=0.  ' 
b n + w  n- m 

Moreover, the total variation is 

where P(C,n + ,,..., cn) (respectively, Q(tk,,+ lr , . ,ren))  is the distribution of IL,+ , . . . , tnl 
when the initial probability distribution is I7 (respectively T). Conse- 
quently, 

where rpkn+' is the distribution of tknf when r is the initial probability 
distribution. Therefore 

llPh-Q:ll = 1 In(d~)-TP~~+~(dx) l  = llI7-TPkn+ll[. 
R 

But, in view of Theorem 2.2 of [16] and the definition of J ,  we know that < is 
aperiodic. In view of Corollary 6.7 of [16], if 5: is aperiodic Harris recurrent 
positive, then for all initial probability distributions r we have 

. 

Therefore 
lim IIPL-QkII = 0. 
n+ m 

By Theorem 4.1 of 121, we obtain 

Moreover, IIPh-Qall + 0, n + co, so Q; * W,. Applying Theorem 4.1 of [I], 
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we have 

This completes the proof of Theorem 5.3. 

Finally, we obtain a corollary using Theorems 5.2 and 5.3, 

COROLLARY 5.1. If the following assumptions are satisfied: 
(1) (R), Wf), (It&, (Ri) and (5.1) for all k >, 2; 
(2) f E @  (R,=L!) and-_there exist S > 0 and M >, 0 such that, f i r  all x E R, 

f ' (x)  3 8 aZ4 If" (x)l < M ,  a d  f sati$es (C) with a2 > 0; 
(3) t is indecomposcable; 
(4) v g d w ,  

then 
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