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Abstract. Some equations are obtained for the moments of the 
first passage time of a one-dimensional time-homogeneous diffusion 
process, through each of two accessible boundaries cr and fl,  given that 
the proctxs has started from X E ( U ,  /?). Some examples are considered 
and the results are graphically shown. Moreover, a special class of 
onedimensional diffusions, of peculiar importance in biological model- 
ing, is considered; the Erst passage times, and other properties such as 
ergodicity and reversibility d the stationary distribution, are inves- 
tigated for these processes. 

In this paper we consider a one-dimensional temporally homogeneous 
diffusion process defined in the interval [a, b] with first and second order 
infinitesimal moments given by two smooth enough functions b (x) and a2 (x). 
The associated It& SDE is 

where 3, is a standard one-dimensional Brownian motion. Notice that the 
diffusion process is defined in the closed interval [a, b ] ,  and not, as usual, in an 
open set. 

Equations of the form (1.1) often arise from stochastic models for biol- 
ogical systems. An example is given by the continuous diffusion approxima- 
tion of some discrete Markov chains (MCs) with binomial-like transition prob- 
abilities. This type of MCs is very interesting and examples are known from 
population genetics (see e.g. 121) and from cooperative interactions in protein 
molecules ([3], [4]). In the diffusion equation which comes from the model of 
cooperative interactions in proteins ([3], [6]), the drift coefficient b (x) is a poly- 
nomial and the diffusion term is given by a2 (x) = x (1 - x) v 0, x E [0, 11. Equa- 
tions like (1.1) with these infinitesimal moments are also used in diffusion 
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neural models for synaptic transmission (see e.g. [7], [18]) and, generally, these 
equations have been often studied in this context, 

We emphasize that, especially when a d8usion equation comes from bi- 
ology, it is prominent to study the qualitative behavior of the solution as 
a function of the starting point. For instance, it is very interesting to know if 
the system may or not reach the extreme states a or b, and, if it does, how long 
it takes. Another important problem is to check if the convergence to stationa- 
rity occurs and if the stationary distribution of the process is reversible or not. 

The present paper consists of three parts. The first one (Section 2) is 
devokd to study the first passage problem for the diffusion process X, which is 
a solution of the SBE (1.1). Precisely, we study the first exit time of X, from an 
interval (a, B) with a 6 o l <  /3 < b and the exit probabilities through each of the 
two barriers a and p, under the assumption that x = a and x = J can be 
reached with probability one; of course, in the special case o! = a and /I = b, 
conditions on the behavior at the boundary could be required. Formulas for 
the moments of n-th order of the first exit time of a diffusion process from an 
interval (a, B) are known since early 50's (see [S]), in the case when the first exit 
time is a proper random variable (the existence of the density of this r.v. easily 
follows by the backward equation). Indeed, let us consider a process X, which 
is a solution of the SDE (1.1). If the passage of X, through the boundaries of 
(a, 0) is a certain event, that is the first exit time zmg(x) from (a, fl  of the 
solution of (1.1) with starting point x ~ ( a ,  8) is a proper r.v., then the moments 
t'")(x) = E (zJ (x)~) satisfy Darling and Siegert's recursive relations (see [8]): 

t ( O )  = 1, P) (a) = 6") (b) = 0, n = 1, 2, . . . 
These are linear second order ODES which can be easily solved by quad- 
rature~. 

In the late 70's, equations analogous to (1.2) were derived for more general 
Markov processes [28]. Results concerning the moments of first two orders 
also appeared in 1151. More recently, in [14] a formula for the average con- 
ditional exit time of the process through one particular end (a or /?) was given. 

Many questions about first passage times have been investigated by Ric- 
ciardi et al. [19]-[21] in the case when the diffusion process is defined in the 
open interval (a, b), under the assumption that both the boundary points a and 
b are inaccessible (in particular, this occurs when the probability current J 
vanishes at the boundary of (a, b)). Therein, some computationally convenient 
formulas were obtained for the moments of the first passage time of X ( t )  
through an assigned state q €(a, b). In the case when the steady-state density 
(i.e. the density of the invariant measure) of the diffusion process is available, 
such moments can be also calculated by Siegert's [27] recursive method. More- 
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over, in a more general case (i.e. nonhomogeneous process), Sacerdote [25] has 
studied various types of recursive equations for the moments of first-passage 
time through two barriers, S, = S, (t) and S2 = S2 (t), which are functions of 
time. 

In this paper, we study an essentially different problem where we consider 
a time-homogeneous diffusion process which never exits from the closed inter- 
val [a, b ] ,  then taking (a, 8) c [a, b] we suppose that the process starting from 
an interior point XE(U, /3) can reach, with probability one, any of two barriers 
a and fi  in a finite time. If a =  a and j3 = b, then, once ,the process has reached 
a boundary-point, it may be absorbed (i.e. it remains there for ever) or it may 
return tom the interior of (ol, fl). This behavior is shown, for instance, by the wide 
enough class of processes studied in [2], for particular values of the parameters, 
as well those related to diffusion neural models (see [7] and [18]). 

Then we state here some equations for the moments of first and second 
order of the first exit time through a particular end of the interval (a, j), in the 
case when the two barriers LX and fl are both attainable. Of course, we suppose 
that conditions are satisfied in order that the diffusion process driven by (1.1) 
never exits from the interval [a, b] (in the case when a2 (x) = x (1 -x) v 0, these 
conditions on b(x )  have been obtained in [2]). Our approach is based on the 
use of ItB's formula, and some arguments are similar to those used in [15]. 
Results somehow like these have been obtained by Ewens, by studying the 
diffusion approximation of conditional Markov chains in population genetics 
(see [9]). When the two boundaries a and b are absorbing, differential equa- 
tions for the moments of any order of the first exit (i.e. absorbing) time through 
any of the boundary can be found. 

In terms of a normalized population, whose evolution is described by a m u -  
sion process in the interval [0, 11, the first-passage time through the barrier 
x = 0 is nothing but the extinction time of the population, while that through 
x = 1 is the time at which the population reaches its maximum size. 

Notice that the knowledge of the distribution (or, at least, of its moments) 
of both these two exit times is particularly interesting in many applications, as 
is equally important, for instance, while observing interspike intervals in mod- 
els for neural activity, to know the first time at which the membrane voltage 
exceeds a voltage threshold. 

In the second part of this paper (Section 3), we go back to diffusion 
processes with second order infinitesimal moment a2 (x) = x (1 -x), which are 
essentially those obtained by the continuous approximation of the MCs con- 
sidered in [2]; then we study further properties which were not investigated in 
[2], such as the reversibility of the process and the ergodic property of the 
transition probability function: 

P ( t ,  x, E ) - t , u ( E )  as t +  m, 

vhere p is the invariant measure of the process. 



280 M. Abundo 

In Section 4, some examples of one-dimensional diffusions on an interval 
I are considered, and the moments of the first exit time through the ends of 
I are computed. 

Ac kn owl edgemen t. I wish to thank L. Sacerdote for useful discussions 
and suggestions. 

2. FIRST PASSAGE TIMES ANH3 RELATED PROBLEMS 

First, we briefly recall some facts from the theory of diffusion processes. 
- Let X(t) be a temporally homogeneous diffusion process in [a, b] with 

first and second order moments b (x) and u2 (x), respectively; then the transition 
probability P (x, t, E) of X(t) is uniquely determined by b(x) and a2 (x). Alter- 
natively, X(t) is a solution of the SDE 

where B, is a standard Brownian motion. 
Iff (x) is any bounded fmction defined in [a, b], then 

b 

u ( t > ~ ) = E , f ( X ( t ) ) = j f ( ~ ) P ( x , t , d ~ ) l  t ~ C O , 7 ' l ,  
a 

is continuous and bounded together with its derivatives au/dx, a%/ax2, au/at, 
and it satisfies Kolmogorov's backward equation: 

with terminal condition 

limu(t, x) = f (x) .  
t-0 

In the case when P (x, t, .) has a density p (x, t, y) regular enough, then 
p(x, t, y) satisfies (2.2) under the condition 

Moreover, p(x, t, y) is a fundamental solution of the forward Fokker-Plank 
equation (FPE): 

where the operator L* is the forma1 adjoint of L. The FPE can be also 
written as 
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where J is the probability current defined by 

and p(x, t )  is the one-time probability 

satisfying the initial condition p (x, t )  I,=, = p (x, 0). 
Formula (2.4) is the FPE written in the form of continuity equation. If the 

diffusion X ,  has an invariant (or stationary) measure absolutely con- 
tinuous with respect to the Lebesgue measure, its density W(x) is the solution of 
dJ (x)/dx = 0 with p (x, t)  = W(x) or, equivalently, L* W = 0. 

Remark 2.1. Let zmp(x)  = {inft 3 0 I X,$(a, 8)) be the first exit time from 
(a, 13) of the solution of (2.1) starting from the interior point x E(E, 8). Then, if 
t = rU8 (x) is finite with probability 1, it is well known (see e.g. [12], [13], [26]) 
that u(x) = E (zap (x)) is the solution of the Dirichlet problem 

Formula (2.6) is called Dynkin's equation. 

Remark 2.2. The probability of exit through the end x = a, say 

n, (x) = ~r (X (zap (x)) = a I X (0) = x) 

(under the condition that the boundary is accessible, i.e. P (zuB (x) < ao) = I), is 
the solution of the Dirichlet problem 

In an analogous way we can see that nfl (x) = Pr ( X  (zUa (x)) = B I X (0) = x) is 
the solution of 

A straightforward calculation shows that the solution of (2.6) is 

(2.8) 

where 
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The solutions of (2.7) and (2.7') for n,(x) and xb(x) are given by 

(2.10) ~a(~)=$(x)/$(Ph z a ( x ) = 1 - ~ ( x ) .  

We recall that a boundary point r E (a, 8)  is called attainable (or acces- 
sible) if 

P,(lirnX(t) = r, t < co) > 0, 
t"*K 

and unattainable (or unaccessible) otherwise. More generally, following the 
Feller classification, the boundary point r is called attractive if 

: .  .. . 
. . P (limX (t) = r) > 0 

t + I  

and repelling (or natural) otherwise. The classification above can be charac- 
terized in terms d integrability conditions of the functions 9 and 9 which are 
obtained from t$ and defined in (2.9), by replacing the lower extremum of 
integration u by any number c ~ ( a ,  8). Precisely, we have: 

r r is attractive if 9 is integrable over a neighborhood of r, and repelling 
otherwise; 

r r is attainable if 6 is integrable over a neighborhood of r, and unat- 
tainable otherwise; 

e r is regular if the function [@(r2]-I is integrable over a neighborhood 
of r, absorbing otherwise. 

If the boundaries a and b are both regular, it is easily seen that the process 
X (t) has an invariant measure with density W (x) = const. [r$ (x) a2 (x)] -I. 

Explicit formulas for the n-th moments of the first exit time are well known 
(see e.g. equation (3.26) in [25]). Also, by solving directly Darling and Siegert's 
recursive equations (1.2), we can see that, when T=D(X)  is a proper random 
variable, the moments t(")(x) = E (zaa(xT) are determined by the formula 

where #, $ are given by (2.9) and 
X X 

- e, (x) = j t, (s) as, t, (x) = 4 1x1 J 2t(,- (s) ( s )  4 (s)] - as. 
a u 

Formula (2.11) reduces to equation (3.26) of [25] by considering a suitable 
transformation which brings the process X(t) into another process Y(t) hav- 
ing infinitesimal variance equal to 2 (such a new process is defined by 

Y (t) = $17 (l/a (s))ds; see also [lo]). 
In the case when a = a, P = b and the invariant density W(x)  

= C [$ (x) a2 (x)] - exists, then 
X 

(,(x) = $(x)J2t("-')(s) W(s)-C-lds = 2C-I #(x)p(t["-') 1(,,,)), 
a 

where dp (s) = W(s) ds is the invariant measure. 
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Now, we will consider the main results of the paper, i.e. some equations 
for computing the moments of first and second order of the exit time of the 
di€fusion process driven by (2.1) through a given end (a or b) of the interval 
(a7 8). 

The first result concerns a way to compute the average first exit time 
through the end x = a. Indeed, this result has already appeared in [14] and 
was obtained following a different approach based on the continuity equation 
for the probability current. We derive this result following ideas similar 
to those used in [I51 to obtain the expectation of first exit time from an 
interval. - .. - 

THEOREM 2.3. Let X ( t )  be the d#usion process which is the solution of 

(2.12) dX (t)  = b ( X  ( t ) )  dt + cr ( X  jt)) dB,. 

Let us suppose that both the ends of (a, fl  are reachabk (accessible); let ~E,(x} be 
the probability that the process starting at x E(E, reaches the boundary of 
(u,  B) for thefirst time at the end x = or, and let T,(x) be the first arrival t i m  at 
the boundary with the condition that the exit takes place at x = a. Let T,(x) be 
the solution of the problem 

Then T, (4 = E (% (4 za (x))  = 7% (4 E (7, (4). 
Analogously, i f z p ( x )  is the probability to exit at the right of (u ,  /I), z~(x) is 

the first exit time through x = fl, and 5 (x )  = zg (x) E(z@ (x)), then Tg (x )  satisfies 
the problem 

Pr  o of. Fix x E (a, b) and let X (t)  be the solution of (2.12) starting from x. 
Since ItB's formula holds for functions of the solution process on bounded 
Markov time intervals, if z (t)  = min ( t  , zk), we get 

s(0 ~ ( 0  
T, (x (z (t))) = T, (4 + j LT, (x (s)) ds + S Td (x (s)) 0 (X (4) dB,* 

0 0 

Then, as t + oo, we obtain 
Z.(X) r0rtx-r) 

T, (X (z, (XI))'= T, (4 + j ( - n, (X (4)) ds + J z (x (4) a (X  (s)) d33 = 

0 0 

From this, by using the boundary condition T, (~(z,(x))) = T,(ol) = 0, and 
taking the expectation of both sides, we have 
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But the last quantity is equal to E(z,(x) na(x)). Indeed, b y  I t ss  formula we 
obtain 

S 5 

n, (X (s)) = 7 ~ ,  (x)  + 1 Lna (x (t)) dt + j 4 (x (t)) fl (X It)) d3 t .  
0 0 

Then, by (2.14) and (2.7), 

and the last expectation is zero, since, changing the order of integration, the 
integral is equal to 

The proof is completed. 

By solving equation (2.13) by quadratures, we obtain the formula 

Analogously, 

Here 

- X 

= S<A(t)dt, A = a, B, $(x) = 14(t)dt.  
a a 

Remark 2.4. Notice that, in order to find a Dirichlet problem whose 
solutio-n is za(x), a nontrivial difficulty is by the fact that the boundary con- 
dition at the right, z, IB), is not known. An instructive calculation shows that, if 
one conditions the process to exit through the end x = a, one obtains for the 
process the SDE 

dX (t)  = F(x) + a (x)  dB,, 

where the drift term is modified in 

K(x)  = b (x)  + n& (x) c2 (x)/z, (x). 

Indeed, let us write za = z + (z,- z) = z +r and rewrite the equation 
L (E (na ~ 6 ) )  = - nu as 

L ( E ( n a ~ ) ) + L ( ~ ( n a r ) )  = -n,. 
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Now, for all x.s(uY /3) we have 

L(E(%f +zar)) 

= (r + 2 )  L ( E  In,)) + nu (L ( E  (z)j f L ( E  (4)) + ( (E (2)f + (E (r))l)rr2 (x) xb 

= - na + nu L (E (r)) + a* (x) ((E IT))' + ( E  (r))') 

because L~E,  = 0, L ( E  ( T I )  = - 1,  x E (a ,  B).  Then the equation L(E (nu t,)) 
= -nu can be written in the form 

a2 (x) X ;  (E  (z,))l+ .rr, b (x)  [(Et,)' - (ET)'] + 4 c2 (x)' [(EzJr - (Ez)"] = 0,  

that is . 

u2 (x )  7CI, (ET,)' - R, L (ET) + X, L (Ez,) = 0 

and, since L(E2) = - 1 ,  after some manipulation we finally obtain 

Thus, Ez, solves the same equation of ET, with the drift term modified to be 
6 ( x )  = b (x)  + K: g2 (x)/n,. (This-kind of result can be found for instance in [9 ]  in 
the case when a and fi  are absorbing.) Obviously, E (r, (a)) = 0, but the problem 
remains how to assingn the boundary condition at x = b. 

Remark 2.5. By summing the equations in (2.13) and (2.13'), since 
x, (x)+ 7c, (x )  = 1 ,  the function T, (x) + 5 (x) satisfies (2.6), and for the unique- 
ness of the solution of the Dirichlet problem we finally get T, + Tg = E (z), 
that is 

(2.16) E ( ~ a p  ( X I )  = E ( ~ a  ( X I )  % (x )  + E (z,  (XI) % ( X I -  
Remark 2.6. By Remark 2.4 it follows that z = E (z,(x)) is the solution of 

the Dirichlet problem: 

where the boundary condition za is unknown (cf. e.g. [9]) .  
On the ofher hand, by Theorem 2.3, z (x)  xu (x)  is also the solution of (2.13); 

then d (a) can be easily calculated and it turns out to be equal to 8a, IS)l$ (8). 
Thus E (z& solves the Cauchy problem: 

In order to obtain the second order moment of the first exit time through 
a particular end of the interval (a, /?), we shall make use of a drift trans- 
formation. Indeed, by means of the Girsanov formula, we shall get the desired 
moment in a different suitable probability space. 
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Let us consider, for instance, the end a, and choose T > 0 such that 
z, (x) d T for aII x E (a, p);  then, let us consider the process z(t) which is the 
soIution of the SDE: 

where 

. . 

and $ is a Brownian motion defined in a new probability space (L?, F, 8 to 
be chosen in a suitable way. 

We make the following assumption: 

(A) There exists 8 = 6(x) > 0 such that, with probability one, a(t) 
E[E, p-6)  for all t € [ O ,  n. 

For instance, (A) is fulfilled if the boundary x = #I is repelling for the 
process 2 (t). Notice that, if b (x) and a (x) are sufficiently regular in order to 
assure the uniqueness of the solution of (1.11, then the solution of (2.19) is 
defined up to the (random) explosion time at which g(t) reaches the end x = /I 
(in fact, g(x) becomes unbounded at x = 8). However, if the assumption (A) is 
satisfied, this explosion time is infinite with probability one. 

Now, define 

Notice that, because of assumption (A), the following condition holds: 

where Ep denotes expectation with respect to the probability measure p. Then 
all the conditions are satisfied to apply the Girsanov theorem (see e.g. [Ill). 
Thus, by means of the Girsanov formula, we infer that, for 0  < t d T, the 
process %(t)  is also the solution of the SDE: 

where the Brownian motion $ is chosen in a way such that 
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Moreover, the probability measure P" dehed in (a, f) is absolutely continu- 
ous with respect to P and it is given by the formula 

In other words, if the assumption (A) is satisfied, then X ( t )  = x(t), 
t E [0, T,(x)]; thus the process X(t) is nothing but (in a different probability 
space) the process X (t) conditioned to exit for the first time from (a, P) through 
the left end a. Then, by using the argument above, we are able to obtain the 
following: 

THEORE& 2.7. k t  us suppose that for some s 2 0 

land set u (x) G EF (2; (x)); then v (x) is the solution of the problem 

v (a) = 0, v (fl)  $finite, 

where 

and E(zh) is given by Theorem 2.3. 

Proof. Let z ( t )  be the solution of (2.19); first, we observe that because of 
(225) the end fl  is repelling for the process a (t). Indeed, since the boundary P is 
attainable for the original process X(t), in order that it might be repelling for 
8 ( t )  it is ~ ~ c i e n t  to assume that the further factor of the function @ in 
(2.9), i.e. 

is not integrable near x = B. This condition is exactly (2.25). . 

Now, let z (t) be the solution of (2.18); then, by ItG's formula applied to the 
process 3 (t), 

where T, = min (z,, t). Then, for t -+ m, using the fact that 2 (T, (x)) = X (T, (x)) 
= o: and the boundary condition z (a) = 0 we obtain 
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Taking the Pexpectation we have (because of Remark 2.6) 

Moreover, taking the F-expectation of the square of both members in (2.28), we 
obtain 

Now,- let w(t) be the solution of the problem 
. . 

(2.31) $ c T ~ ( x ) w " + F ( x ) w ' = - [ ~ ( x ) ~ ( x ) ] ~ ,  w ( a ) = O ,  w(P)=wafinite. 

Once again by ItS's formula and the boundary condition on w (x) we obtain 

Then, from (2.30) it follows that 

Moreover, 

(2.34) 4 a2 (x)  v" + g(x) v' = [* 0' (x) w" + 6 ( x )  wf + (2' a)'] 
+ 22 [i a2 (x)  z" + g(x) .dl = - 22 

siqce the expression in the first brackets is zero by (2.31), and the second one is 
equal to - 1 by (2.18). Finally, the result follows by (2.34) and the fact that 
v (a) = zZ (a) + w (a) = 0. 

Remark  2.8. If we define the differential operator by 

(2.3 5 )  L (u) = $ cr (x)  urf + K ( X )  uf , 

it is easily seen that 

Consequently, 

Then, if v ( x )  = EF (z,2 (x))  is the solution of (2.26), then z, (x) Eg (zz (x))  is the 
solution of the following problem: 
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Finally, defining T$) (x) = Ejj (na(x)z! (x)), n = 1, 2, it is easily seen that p1 (x), 
PI = 1,2, is the solution of the equation 

with boundary conditions 

(2.39) T,["' (x) (ol) = En' (fi)  = 6.  

A differential equation like (2.26) was stated by Ewens [9] for a diffusion 
process arising by the approximation of a Markov chain from population 
genetics. Here, we obtain a more formal verification of the boundary or initial 
conditions for the equation. 

The equation (2.38) with boundary conditions (2.39) coincides with Dar- 
ling and Siegert's result for the F-moments of the unconditional exit time 
-caJ from (a,  B), with cn) in place of t("' for n = 1, 2 (see equation (1.2)). We 
wonder if (2.38) and (2.39) also hold for n > 2. At the moment, we are not able 
to show this without any further assumption on the nature of the boundaries 
a and fi ,  not even by means of the techniques used by Darling and Siegert in the 
case of the exit time from (a, B) (such as the Laplace transform, etc.). 

Remark 2.9. An equation analogous to (2.37) holds for Es (z i  (x)) under 
the condition that '~tg (x) = 0 (x- a)l12 + P  as x 4 a. Here is another suitable 
probability measure absolutely continuous with respect to P, obtained by the 
same construction which precedes Theorem 2.7. Summing up we conclude that 
EF(r:(x)) is the solution of the problem 

(2.40) LEF(x,2:)= - ~ E ~ ; ( x , T , ) ,  E i ; ( . n , ~ ~ ) t , = , , ~ = O ,  

while E ~ ( z i  (x)) is the solution of the problem 

(2.4 1) LEB ( 7 1 , ~ ; )  = -2E~(7c, a,), Ep (3 zi) = 0 .  

Moreover, Darling and Siegert's equation for n = 2 gives 

By summing (2.40) and (2 .41)~ we obtain 

= - 2 (Ep (n, a,) + Ep (71, zp)) = - ~ E P  (-LJ) = LEP ( ~ $ 1 .  
Then, for the uniqueness of the solution of the Dirichlet problem, we finally get 

The explicit formulas for the second order moments of z,(x) and 'cp(x) are 
easily obtained by quadratures of the corresponding differential equations. 
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Precisely, we have 

A = a, 8, E, = Ep, E,j = Ep, 

where X 

&A = f A  ((S ds 
and a 

x 

. . 
{A ( 4  = 4 (XI 1 ~ R A  (3) EA(TA (s)) (0' (3) 4 (4)- ds- 

a 

Let us suppose now that both the boundaries a and b are absorbing. In 
this case, we can consider the diffusion process conditioned to exit from (a, b) 
through one of the ends (of course, once the process has reached this boundary, 
it remains there for ever); the first exit h e  through an end (a or b) coincides 
with the absorbing time at this boundary. Such a conditioned process was 
considered by Ewens [9] for a diffusion arising by the approximation of a Mar- 
kov chain from population genetics. 

Let us assume for simplicity that the transition probability of the diffusion 
process carried by (2.1) has a density p ( x ,  t, y) (this is the case, fox instance, if 
there exists an invariant measure absolutely continuous with respect to the 
Lebesgue measure), and denote by PA(x, t, y)  (A = a, b) the corresponding 
transition probability density for the process conditioned to be absorbed at the 
end A = a, b. As easily seen, we have 

(2.45) PA (x, t ,  Y )  = P (x, t ,  Y ) ~ A  (Y) /~A (XI, 
where zA(x) is given by (2.10). 

Now, we search for the infinitesimal moments of the (conditional) diffusion 
process whose transition probability density is PA(x, t ,  y). For the drift coeffi- 
cient SA(x) we must have 

By the Taylor expansion of ~ A ( x )  we obtain 

ZA (Y )  = XA (XI+ (Y -4  ~GA (4 + 0 (Y -x)'- 

Then, substituting in (2.46), we get 
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Here the integration is over the set Iy- xl < E and we have used the fact that 
the integral of Cy-x). 0 ( y  - x ) ~  p (x, t ,  y) is zero because it gives the infini- 
tesimal moment d third order (cf. [22] and [231). 

An analogous calculation shows that for the diffusion coefficient the 
equality 

(2.48) (x) = a2 (x) 

holds since now the additional term is an integral giving the infinitesimal 
moment of higher order. 

Therefore, in the case when both a and b are absorbing barriers, the 
diffusion'prcicess conditioned to exit through the end A = a, b has the infini- 
tesimal operator given by 

(2.49) 

where 

For the conditional diffusion process the boundary B = (a, b)\A is obviously 
repelling; then the case sf a and b absorbing reduces to that of Darling and 
Siegert for two barriers, since the exit time zmB (x) necessarily must coincide with 
ZA (x). Thus, by applying a slight variant of Darling and Siegert's method, we 
finally obtain 

PROPOSITION 2.10. If two barriers a and b are both absorbing, then the 
mowents 8) (x) = E (T$)(x)) of any order n of the absorbing time at A = a,  b are 
the solutions of the following equations with initial conditions: 

r$" = 1, $)(A) = 0, F ~ ) ' ( A )  finite, n = 1, 2, ... 

Notice that the initial value of the derivative r l ) ' (A )  is unknown; (2.50) 
can be transformed into equations with boundary conditions by considering the 
barriers A and B-E. Then the solutions of (2.50) are obtained as limits of the 
solutions of Darling and Siegert's equations for the last two-barrier problem 
with zero boundary conditions when E + 0 (cf. [I91 for an analogous case). 

Alternatively, if we set 

72) (x) = E [nA (x) T$) (x)) = XA (x) (x), 

it is easily seen that Ty)(x), n = 1, 2, . . ., is the solution of the Dirichlet 
problem 
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Remark 2.11. The above procedure cannot be followed as it stands if 
a and b are not absorbing. Indeed, the use of the operator permits in Theo- 
rem 2.7 to find (in a certain probability space) the second order moment of the 
first exit time from A if the assumption (2.25) (or its analogue regarding the 
behavior of n ~ ( x )  near the ends of (a, 8) is satisfied. However, it must be 
underlined that without the absorbing assumptian, and any further condition, 
the operator EA does not represent the differential operator of the diffusion 
process conditioned to exit from A. 

Nevertheless, if x = is repelling for the diffusion corresponding to 
x,.(conditibn (2.25)), then 2 (t) can exit in a finite time only through the end cx, 
i.e. z, (x) = za8 (x). Once again, applying Darling and Siegert's method we see 
that the equations (2.50) hold for the P"-moments of any order of the first exit 
time through the end a. Of course, analogue equations hold for the p-moments 
relative to the end fl if the analogue of (2.25) is satisfied. 

Finally, we observe that, in the case when the boundaries a and b are both 
repelling for the original diffusion process in [a, b], and the density of the 
invariant measure of the process is known, a recursive Siegert's method [27] is 
available to calculate the moments of the first exit time through any of two 
ends of an interval (a, &I, a < a < fi  < b. 

3. DIFFUSIONS ARISING BY APPROXIMATION OF MARKOV CHAINS 
WlTH BINOMTALLME TRANSllTON PROBABILITIES 

In this section we consider the diffusion processes which arise by the 
continuous approximation of discrete Markov chains with binomial-like tran- 
sition probabilities. Precisely, let us consider the homogeneous Markov chain 
Xk having transition probabilities 

where- Xk represents a population at time k which can take values 
n E (0, 1, . . . , N), N being a fixed positive integer (that is the maximum allowed 
size of the population), and the parameter 9 = 6(n/N) is a function of the 
fraction n/N of individuals at time k over the maximum size of the population. 
This type of MCs has been treated at length in 121, where it was assumed that 
6 is a polynomial function of its argument, i.e. 

For a survey of examples of such MCs from biology, see [2]. As stated there, 
the continuous approximation of the normalized MC (i.e. Xk/N) leads to con- 
sidering a diffusion process X,  in [0, 1) such that the second order infinitesimal 
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moment is 

and the drift term b(x) is a polynomial function of the same degree r of 8 (x). 
For such a diffusion, the study of the corresponding SDE (1.1) is more com- 
plicated, because g(x) vanishes at the ends of the interval (the condition 
cr2(x) > 0 is usually assumed for diffusion processes in order to get peculiar 
properties for certain related parabolic PDEs); furthermore, it is not Lipschitz 
continuous, thus the results concerning the uniqueness of the solution starting 
from a given-initial point x E LO, 11 as well as the continuity of the associated 
transition probabilities (Feller property) do not hold immediately (see 121 for 
a discussion). These properties as well as the exit problem for the diffusion 
process X ( t)  E [0,  I] and attainability of the boundary have been investigated 
in [2]. Indeed, under certain conditions on b(x), the process X, does not exit 
from [0, 11 for any time; moreover, if the function [x(l -x) @(x)]-l is ink- 
grable in [O, 11 (for the definition of @, see (2.9) and the text to follow), there 
exists a unique absolutely continuous invariant measure p whose density is 
a beta function if r = 1, while for r > 1 it is a beta function multiplied by 
a factor e-a(x), where q (x)  is a polynomial of degree r - I. Furthermore, in the 
case r = 1, the ergodic property holds for the transition probability function 
P(t, x, E), that is P ( t ,  x ,  E )  + p (E)  as t - XI for any p-measurable set 
E c [0, 11 (see [2]). Also, for r = 1 the process X, is reversible (see [6]). Here, 
we want to remove the restriction on the drift term b (x) to be a polynomial by 
allowing it to be any bounded continuous function on [0, 11, and we will show 
that many of the properties above remain valid. Then, let us consider the It6 
SDE 

where b(x) is a bounded Lipschitz-continuous function defined in [0, 11; the 
first result that immediately follows is: 

 THEOREM‘^.^. The SDE (3.3) has a unique strong solution X(t) for any initial 
condition X(O)E LO, 11. Moreover, the continuity with respect to the initial con- 
dition holds for the transition probability function (Feller property). 

For the proof see 151. 

Note that some care has to be taken in the proof, since the diffusion 
coefficient is not a Lipschitz-continuous function. 

By exactly the same proof of Theorem 2.3 in [2], we obtain 

THEOREM 3.2. If b (x) in (3.3) satisfies b (0) 0, b (1) < 0, then the solution of 
the SDE (3.3) with initial condition X(0) E [0, 11 remains in the interval [0, 11 for 
QEE the time t 2 0. 

7 - PAMS 17.2 
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In order to obtain the ergodic property for the transition probability 
function we make use of an argument already utilized in [5] ,  which consists in 
comparing the diffusion process X, with two extreme processes. In fact, we 
obtain 

THEOREM 3.3. Under the assumptions of Theorem 3.2, ij 

then . . . . . 

. . 
T , ~ ( X ) - ) P ( ~ )  as t + a ,  

where P(t, x, E) i s  the transition probnbilityfunction of the process Xt described 
by t h  SDE (3.3), and p is any invariant rneaswre (i.e. p (T f )  = p (f)). This implies 
that the invariant measure is unique and the ergodic property holds: 
P(t9 x, E ) + P ( ~ .  

P r o  of. By assumptions, there exist two polynomials of degree one, p- (x) 
and p+ (x), such that 

and 

(3.5) 

Now, let X-(t) and X+(t) be, respectively, the solutions of the SDEs on [O, 11: 

and 

(3.7) d~ = p + ( ~ ) d t +  d m ,  Y(O) = x. 

Then, by a standard comparison theorem (see, e.g., Theorem 1.1 of [17], p. 352), 
the process X, being the solution of (3.31, satisfies with probability one: 

(3.8) x- ( t )<X(t )<X+(t )  for all t. 

The processes X- and X+, having polynomials of degree one as drift terms, 
admit invariant densities of beta-type. Then, exactly in the same way as in 153 
to prove Lemmas 3.3,3.4 and 3.5, respectively, we are able to get the analogous 
results, i.e. : 

(4 p(t,  x, (0, 1)) = 1; 
(ii) for all t > 0 and any open set B c (0, 1) there exists 6 > 0 such that 

(iii) let f E C LO, I] and let to > 0 be fixed; then for every compact subset 
K of (0, 1) the family { v , ) , ~ ,  c C ( K )  defined as v,: K + R, x + v, (x) = T, f (x), 
is a relatively compact subset of C(K). 
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Finally, following the proof of Theorem 3.6 in [S] and using 0, (ii) a,nd (iii), 
we obtain the desired result. The uniqueness of the invariant measure follows 
by the bounded convergence theorem and by the definition of invariant mea- 
sure. 

Remark 3.4. Reasoning as in [5]  one can show that the invariant mea- 
sure p is absolutely continuous with respect to the Lebesgue measure on [0, l]. 
Consequently, the transition probability function P (t, x, E) has a density, since 
the absolute continuity of the invariant measure implies the existence of the 
density of the transition probability function. 

 erna ark 3.5. We are not able to compute explicitly the transition proba- 
bility function P(t, x, E) of the Markov process related to the SDE (3.3) 
for any bounded continuous drift b(x) .  However, in the special case when 
b (x) is a polynomial of degree one, an explicit formula for the transition proba- 
bility density function p(x, t ,  y)  can be given. Indeed (see, e.g., [ l a ,  [18]), 
p ( x ,  t, y) can be written as an infinite series of hypergeometric functions as 
follows: 

where, if b (x) = bo + b, x, 

A=2bo, B=-2bl,  6=A-1,  y=B-A-1, 
(3.10) 

Ai = i(-2bl+(i-1))/2, pi(y) = F(B+~-1,  -i, B-A; y), 

F is a hypergeometric function, and P{pd(y) is a Jacobi polynomial (see the 
Appendix). Alternatively, p(x, t ,  y) can be written as (see [5]): 

where ~ ~ ~ , ~ ~ ( y )  is the beta-density of parameters 2b, and -2bl-2bo, i.e. 

(3.12) ubo,bl (y) = yZbo-I (1 - y)-2(h+ bl)-l 
r(-2bl) 

~ ( ~ o ) r ( - 2 ( b O + b l ) ) '  

and {#,), is a set of eigenfunctions of the generator of the diffusion process 
described by the SDE (3.3) with b (x) = bo + bl x, and 1, are the corresponding 
eigenvalues such that lo = 0 (#o = 1) and En < 0 for all n 2 1. Here 4, (x) is the 
normalized Jacobi polynomial on LO, 11 with weight u ~ ~ , ~ ~ ( x )  (see [5]). From 
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(3.9) it follows that as t -, oo: 

= ),A-1 ( I - ~ ) B - A - ~  
(3-l)r(B- l ) r ( B -  A) F ' o ~ ~ - y j ~ o ~ ~ - ~ ~  r2 (B - A) T (A) 

This limit can be also achieved easily by taking the limit as t goes to Winity in 
(3.11) and by using the fact that lo = 0, 1, < 0 for all n 2 1. 

While the convergence in (3.13) occurs at an exponential rate (i.e. in the 
case of a linear drift), for a general continuous drift b (x )  we are not able to 
obtain the rate of convergence of P (t, x ,  E) to ,u (E) or of p(x, t ,  y )  to the 
density p. 

Beversibfity of ab process. Now, we turn to study the reversibility of the 
diffusion process described by the SDE (3.3). We claim that, also by restricting 
our consideration to the case when b (x )  is a polynomial, the process occurs to 
be reversible only when b (x)  is a polynomial of degree one (the reversibility of 
the process in this case has been already proved in [dl). Indeed, the diffusion 
process is reversible if the generator L is self-adjoint, i.e. 

for any functions f ,  h~ E, (0 ,  I), where <-), is the scalar product in L;, and 
p(dx) = u (x )  dx is the invariant measure of the process (u (x) is the product of 
a beta-function of the form const .xC-I (1 - x ) ~ - '  times a factor e-4(x); see the 
beginning of Section 3). A straightforward calculation shows that 

where R (x )  is a polynomial of degree r - 1, if degree of b (x) is r. Notice by the 
same calculation that, when r = 1, R (x )  is identically zero. An easy computation 
shows that the third integral in (3.15) is equal to (f, Lh),, so we obtain 

Then the process is reversible only in the case when R ( x )  is identically zero. 
Thus, we have obtained 
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WREM 3.6. The dzrusion process described by the SDE (3.3) with in- 
variant density y is reversible if and only if the drift b(x) is a poIynorniaZ of 
degree one. 

This fact could explain why the SDE (3.3) with a linear drift 
b (x) = bo + b, x has been widely applied in literature to describe successfully 
a lot d physical and biological models. We underline that, when the drift 
term b(x) is linear, the density of the invariant measure is a beta-function; 
moreover, the transition probability density can be calculated explicitly and 
all the calculations involved are easier. This is just the case of the moments 
of the first-passage times, for instance, those which can be computed more 
or less explicitly when b(x) is linear. Really, in this case, Siegert's equation 
for the Laplace transform gs (1 1 x) of the density of the first-passage time of 
the solution starting at x through a barrier S can be identified with the 
so-called Gaussian equation for hypergeometric functions (see e.g. [I]). Thus, 
gs(A(x)  can be written as a product of a constant multipIied by a hyper- 
geometric function or also as a sum of exponential functions (see [I81 
and [24]). 

In this section we will consider some examples of SDEs like (2.1) and, by 
using the formulas of Section 2, we shall compute the moments of the 
first-passage time through each of two accessible barriers u and B. For some 
examples the computation is carried on in a theoretical way; for others, the 
integrals involved in the formulas cannot be theoretically computed, thus they 
are obtained numerically. 

4.1. The Brownian motion. We take b ( x )  = 0 and ~ ( x )  = 1 in (2.1), a = 0 
and = 1 and we consider 'the SDE: 

By formulas (2.9), we have 

Then, by (2.10), 
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Moreover, 

x 

&(x) = #(x)J'2nl(s)ds = x2, 
.. . - -  - 

0 

. - x X 

g1(x) = J&(t)dt = j t 2 d t  = x3/3. 
0 0 

Then 

From {4.4), (4.5) and the fact that 

the well-known formula follows for the mean exit time of the Brownian motion 
from the interval [O, 11: 

Now, we will consider the second order moments of the first-passage times 
through the barriers u = 0 and fl= 1. Since the assumption (2.25) of Theo- 
rem 2.7 is fulfilled, Eji(z;(x)) is the solution of the problem 

1 d(x) 2 
-v"(x)--=--(2x-x2), v(O)=O, v(1) finite 
2 l -x  '3 

or, analogously, xo (x) Eji(z;(x)) is the solution of the corresponding equation 
(2.38) with conditions (2.39). By solving (4.7) and by imposing v(1) to be finite, 
after some straightforward calcuiation we obtain 

' 

For the second order moment of the first passage time through x = 1, we can 
solve, for instance, the problem (2.38), (2.39), that is 
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As easily seen, the solution of (4.9) is T ( x )  = A x  (3x4 - lox2 f 7), and then we 
obtain 

From (2.43), (4.8) and (4.10) we get 

4.2. Dfisiow arising by approximation of ~ r k o v  cbias with bin+ 
mid-like brsasi~on probBi1iaies. Let b (x) be a bounded Lipschitz-continuous 
function, a (x) = ,/;cll-x)vO, and a = a = 0, f l =  b = 1; then we have the 
SDE already' &sidered in (3.3): 

(i) The case of zero drqt ( b (x )  = 0). By formulas (2.9), we have 

Then, by (2. lo) ,  

Thus, the assumption (2.25) and its analogue for the right end are satisfied. 
By (2.13), n,,(x) E(zo(x))  is the solution of the following problem: 

(4.15) i x ( l - x ) T ' ( x ) = - ( l - x ) ,  T ( O ) = T ( l ) = O .  

By solving (4.15), we easily obtain 

Analogously, al (x)E(. t l (x))  is the solution of the problem 
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and then we obtain 

2(l-x)In(l-x) 
(4.18) E(TI(x)) = - 

X 

Moreover, by (2.16) we get 

For what concerns the second order moments of the first-passage times 
through the ends. a = 0  and f? = 1, by Theorem 2.7 we know that 
n o ( x ) ~ F ~ r ~ ' ( i ) )  is the solution of the problem 

Then, first, we have to solve the equation 

l a x  
T"(x) = g- 

1-x 

whose solution cannot be explicitly obtained. However, we can expand l/(l - x) 
in a geometric series and integrate the series; thus, after an integration by parts 
we obtain 

By a further integration 

Finally, by imposing the conditions T(0) = T(l) = 0, the constants C and 
D are found and we obtain 

8 kf ( ~ - x ~ + ~ ) ( 2 k + 3 )  
(4.23) . Ep (zt (x)) = - 

+ 2 *t21nr 
1-x =, (k+1)2(k+2)2 ,=,(k+l)(k+2) 1 

For instance, by using the fact that the sum of the harmonic series is 7c2/6, by 
(4.23), after some calculations, we get 

Analogous calculations can be carried on for Ej(zf(x)), and then for 
Ep(zOl (x)), but once again we cannot obtain explicit formulas, but only series 
expansions. 

(ii) The case of nonzero drift. We outline the calculation in the case when 
b(x) is a polynomial of degree one, the general case is only some more com- 
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Fig, 1. Exit probabilities and moments of the first exit time for the SDE (4.12) in a symmetric cam 
1 = p = 0.25 

a - pIot of the mean exit time at the left E (zo (x)) (curve I), of the second order moment Er(.rg(x)) 
(curve Z), and of the variance Varp (zo (x)) = E i  (2; (x))-(E (zo(x)))2 (curve 3), as a function of the 

starting point x E [0, 11 
b - the same as in Fig. la  for the exit time at the right 
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Fig. 2. Exit probabilities and moments of the first exit time for the SDE (4.12) in a nonsymmetric 
case L = 0.01, p = 0.125 

a - plot of the exit probability at the left (curve 1) and at the right (curve 2) as a function of the 
starting point X E  LO, 11 

b - as in Fig. la, i.e. for the exit time at the left 



One-dimensional drffision processes 303 

Fig. 2 (continued) 
c - as in Fig Ib, i.e. for the exit time at the right 

putationally complicated. Indeed, we suppose that b (x )  = A-2px, where R and 
p are nonnegative constants such that 1 < 2p, 1 < 1/2 and 4p- 21 < 1. Then 
a = 0 and b = 1 are both attainable boundaries (see e.g. [2]). 

In the present case, it is convenient to consider barriers u and such that 
0 < a < 1, and then to take the limit as a + 0 and #? + 1. By a straightfor- 
ward calculation we get 

From (4.24) and (2.10) we obtain 

Thus, passing to the limit as a + O  and fl+ 1, 7cl(x) turns out to be the 
distribution function of a random variable with beta-density of parameters 
1 - 21, and 2il-4p + 1. As is easily seen 

nl (x )  const. x1 - 2A as x-0. 

Then, in order that the condition analogous to (2.25) holds, it is sufficient to 
take 1 < 1/4. 
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Fig. 3. Exit probabilities and moments of the first exit time at the right for the SDE (4.12) in the 
symmetric case for a set of decreasing values of R = p from 0.25 to 0 (step 0.05). The exit times 

decrease as R decreases 
a - plots of the exit probabilities at the right, n, Q, as a function of the starting point x E [O, 11, 

for the above values of R 
b - plots of the mean exit times at the right, E(zl (x)), as a function of the starting point x E [O, 11, 

for the above values of R 
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Fig. 3 (continued) 
c - plots of the second order moments of the first exit times at the right, Ef(z :  (x)), as a function of 

the starting point XE[O, 11, for the above values of 1 
d - plots of the variance of the h i t  exit times at the right, Varji('r1 (x)) = Efi(z: (x))-(~(7, (x))12, as 

a function of the starting point X E  [0, 11, for the above values of IZ 
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Fig. 4. Exit probabilities and moments of the first-passage time for the Ornstein-Uhlenbeck process 
with b = 1 and a = 1 (see (4.26)) 

a - plot of the exit probability at the left of the interval [0, 11, no(x), (-), and at the right, 
ul(x), (r), as a function of the starting point X E  [0, 11 

b - plot of the mean exit time at the left, E (zo (x)), (-), of the second order momenf Ej(? (x)), (oh 
and of the variance Varj(zo(x)), (*), as a function of the starting point XE [0, 11 
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Fig. 4 (continued) 
c - the same as in Fig. 2b for the exit time at the right 

d - plot of the mean exit time from (0, I), E(zo,(x)), (-), of the second order moment, E(&(x)), 
(o), and of the variance, Var(z,,(x)), (*), as a function of the starting point X E [ O ,  11 
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An analogous calculation can be done for no (x) and (2.25) holds under the 
condition 212- 4p $ $3 0. 

Then, if the parameters h and p satisfy the two constraints given above, we 
can use Theorem 2.7, and we can obtain the first two moments of the first exit 
time through each of the ends of [O,l]. However, the computations are heavy 
and the integral involved cannot be calculated explicitly; thus the quantities 
have been numerically computed. In Figs. 1,2 and 3 some graphs are reported 
of the exit probabilities and of the moments of the first exit time, as a function 
of the initial point x E [O, 11, for some different values of the coefficients d and 
p. .Notice that in the symmetric case A = p (Fig. I), the moments of the first exit 
time at the left starting from x are approximately equal to those of the first exit 
time at the right starting from 1 -x, up to errors due to the numerical com- 
putations (let us consider that the formulas involve improper integral). In the 
nonsymmetric case (i.e. I # p), while appreciable differences cannot be detected 
between the computed values of E (T, (1)) and E (T, (O)), the second moments 
and the variances of the exit times at the two ends show a qualitative different 
behavior (see Fig. 2b and 2c). In fact, if R # p, the equilibrium point of the drift, 
d/2p, is not equal to 1/2, but it is shifted to the left. Then, as one expects, if the 
process starts at x = 1/2, for instance, the probability to exit at the left is 
greater than the exit probability at the right; indeed, the point 2 for which 
no (2) = xl (3 = 1/2 is shifted to the right (3 w 0.7) (see Fig. 2a). 

In Fig. 3, the exit probabilities and the moments of first exit times at the 
right are shown in the symmetric case, for a set of decreasing values of I = p 
from 0.25 to 0 (step 0.05). As R decreases, the exit time also decreases. 

In the case when b(x) is a polynomial of degree greater than one, we can 
see in an analogous way that when the coeficients of b (x) lie in a certain range, 
the condition (2.25) and its analogue on the behavior of no ( x )  and xl (x) are 
satisfied, and then Theorem 2.7 can be applied. 

43. The OrnsteiwUble~~kk process. We consider the SDE 

(4.26) dX ( t )  = - bX dt + dB, ,  

where-b and a are positive constants, and we look for the moments of the 
first-passage time through the ends, for instance, of the interval [O, 11. 

Also in this case, some integrals cannot be found explicitly, since the error 
function is involved. However, 4 (x) = exp (b/a2) x2, and then 

X 

t,b (x) = 5 exp (b/a2) s2 ds = x + 0 (x3), x + 0, 
0 

so it is easy to see that 
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Then, by using also the fact that x, (0) = 0 and n1 (1) = 1, one easily finds that 
7x0 (x) = 0 (1 - X) as x x 1, and nl (x) = 0 (x) as x 4 0. Thus the condition (2.25) 
and its analogue are satisfied, and Theorem 2.7 can be applied. In Fig. 4 the 
graphs of x,(x) and n, (x) are plotted as a function of the starting point 
XE(O, I) for b = a = 1; the graphs of the moments of the first-passage time 
through each of the ends of (0, 1) are also plotted. 

.. . 

A hypergeometric function F is defined as 

The Jacobi polynomials Prpa(y) are given by 

For more details see e.g. [I]. 
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