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Abstract. This paper considers an M/M/1 queue with service 
breakdowns and customer discouragement. Each of the customers 
present in the system at the time of a breakdown may become 
discouraged and leave with a constant probability, independently of 
other customers. The system alternates between working and repair 
periods. Formulas are found for the expected queue size at the end of 
a working-repair cycle. The system is shown to have a stationary 
distribution if the probability of discouragement is positive. 

This paper will consider an M/M/l queue with server breakdowns and 
customer discouragement. Thus, the system alternates between working and 
repair periods. We assume that the durations, say S , ,  R,, S,, R,,. . . , of service 
and repair periods are random variables independent of queue size and of each 
other. Moreover, we assume that Sly  S,,. . . are exponential with E[S] = l/u, 
while R,, R,, . . . are also exponential with E [R] = 1/p. 

During the working/service periods, the system operates as an M/M/l 
queue with rates A and p. During the breakdown/repair periods, no customers 
are served. 

Each of the customers present in the system at the time of the breakdown 
may become discouraged and leave with probability 1-6, independently of 
other customers. Consequently, letting X(t) denote the number of customers in 
the system at time t, if a breakdown occurs at time T, then 

X(Ti) -  in (x(T), S). 

Finally, during the breakdown/repair periods customers still arrive at 
Poisson rate 1, but each may become discouraged and fail to join the queue 
with probability 1 - 8, independently of the state of the system. Fig. 1 shows the 
transitions between states for our model along with their intensities during 
a single working/repair cycle. 
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The above concept of discouragement is the feature that distinguishes 
our model from other queueing models with breakdowns, vacations or 
priority queues. A thorough review of these models may be found in 151. 

Repair period states 

War-king period -states 

Fig. 1. Transitions between states during one cycle of the M / M / 1  queue with breakdowns and 
customer discouragement 

When 6 = 1  (no discouragement), our system may be put into the context of 
a queue with stochastic variation [6] or of an M/M/1 queue with hetero- 
geneous arrivals and service [ I l l .  The case 6 = 1 is also an example of 
a Markov modulated queue with arrival rates switching from R to A0 and 
service rates switching from p to 0 (see, e.g., [9]). Markov modulated queues 
in which the service rate may periodically change have been used to model 
situations involving server vacations or the arrivals of high priority cus- 
tomers. Our model is motivated by the realistic assumption that some 
customers may decide to leave as a result of a drop in service rate. For 
example, in barber shops, auto repair shops, or medical clinics, there may be 
a preferred server for whom loyal customers form a queue. When the 
preferred server is called away, hisher customers may be offered an alter- 
native server, causing a binomial depletion of the queue. The analytical 
results of this paper extend trivially to the more realistic situation where 6 is 
a function of p, so that customers may base their decision about leaving on 
an estimate of the length of time the preferred server will be away. Examples 
of priority queues are seen in subcontracted manufacturing, computing and 
other areas where a high priority customer often requiring an excessive 
service time may interrupt the regular flow of a queue. The arrival of such 
a customer may cause a binomial depletion of the regular customer queue. 
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Finally, note the difference between customer discouragement, where 
customers leave when the system is not operational, and the well-developed 
notion of customer impatience, where customers leave after a prolonged wait 
regardless of the operational status of the system (see, e.g., [4] or [g]). 

In this paper we shall investigate: 
(a) the numbers of customers in the system at the ends of the repair 

periods, 
(b) the stationarity of the number of customers in the system, 
(c) the probability that a customer is eventually served, and 
(d) the waiting time until service for a "stubborn" customer, is.  one who 

refuses to become discouraged. 
Some of the results will be extended to the case of G/G/l queue and/or 

arbitrary distributions of the durations of the working and repair periods. 

1. System status d the ends of repair periods. In this section, we shall 
consider the embedded process {X,, n = 0, 1 ,. . .) defined by 

n 

X , = X ( O ) ,  Xn=X(C (Si+Ri)):=X(T,). 
i = 1  

Thus, X, is the number of customers in the system at time T, which is the 
end of the n-th repair period (or the beginning of the (n+ 1)-st working period). 

Since {X,) is a Markov chain, it is natural to start by determining the 
one-step transition probabilities. We begin by finding the conditional proba- 
bility generating function for X, given X , - , .  

where P: is the Lapicace transform of the probability generating function of the 
number of customers in the systemfor a regular M/M/1 queue which starts with 
x individuals. 

Comment.  Thus, letting r ( t )  be an M/M/1 process, 

with 

and 

$ ( v )  = ( ( A  + p + v )  + J(A + p + v)' - 41p 1/21 
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From (1) it may be seen that we shall need the values of the functions r$(.) 

and $(.) only at ol, so that in the sequel we let 4 = $(a) and $ = $(a). 

Proof.  We condition on the durations R, = s and S, = s of the n-th repair 
and service periods. We have 

The second equality comes from the Poisson arrival rate 18 of customers 
during the repair period, while the third equality comes from the binomial 
discouragement at the breakdown. The last equality is due to the fact that the 
process is an M/M/1 queue during a working period. ra 

This theorem can be generalized to the case where the lengths of the repair 
periods have arbitrary distribution with moment generating function m,(-). In 
this case, the theorem becomes 

E[zXn ( X,-l = X] = ~m,(lO(~-l) )P,*(Gz+l-6,  a). 

The corollary below will also be true for this generalization, provided we take 
E(R) = mk(0) = l/j?. 

From the probability generating function (1) we can derive the conditional 
expectation: 

COROLLARY 1. 

P r o  of, Differentiating (1) with respect to z and substituting z = 1 we 
obtain . .  

The use of the fact that (1 -4)(1-$) = -a/L simplifies the algebra, which 
leads to (3). 

The one-step expressions given in Theorem I and Corollary 1 can be 
exploited inductively to give corresponding multistep formulas. In order to 
write these formulas we introduce the following notation. Let us define 

A i ( z ) = J i z + l - 6 '  for i = 0 , 1 ,  ... 
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Next we put 

'A') = -~P~j(z)/(~[(B+~~(l-~i-l(z)))(~i(~)-#)I~i(z)-$)]} 

and 

In this notation, formulas (1) and (2) give 

(4) E(zXn I X n - J  = Bl(z)[Al(z)]xn-1+CI(z)g5Xn-1. 
I 
I Let us also define Dm's recursively by 

D,,(a, Z) = 1 

and for i = n, ..., 1 

We shall now prove 

THEOREM 2. Tkae probability generating function of X ,  is given by 

Proof. For n = 1 ,  the assertion reduces to that of Theorem 1 .  Assume 
now that (6) holds for a < N. We write, using (4), 

To complete the proof we use the fact that AN(Al(z)) = AN+,(z) ,  Bj(Al(z))  
= Bj+l ( z )  and the definition (5) of D,(k, z) to verify that the coefficients at 
[AN+ l ( ~ ) ] X O  and [Ai(#)lX0 for i = 1, 2,. . . , N in the formulas (7) and (6) for 
n = N + 1 agree. H 

6 - PAMS 14.1 
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Applying an inductive argument to Corollary 1, we arrive at two multistep 
formulas for the expectation of queue size at the end of the n-th repair period: 

2. The statiosasity of queue size. We now have the following theorem: 
THEOREM 3. The process X(t) has a stationary distribution if and only if 

either 
(i) a = O and A < p or 

{ii) a > 0, = 0 land 318 = 0 or 
(iii) S = 1 and aAB +PA < Pp or 
(iv) 6 < 1 a d  afl > 0. 
Proof.  When a = 0, our model reduces to the simple M/M/1 queue so 

that X( t )  has a stationary distribution if and only if A < p (see, e.g., [7]). 
Similarly, if B = 0, the repair period will never end, and the process is not 
stationary except in the trivial case of no arrivals (A0 = 0). Finally, when S = 1, 
we have an example of a Markov modulated queue of the type discussed in 
[lo]. In that paper it is shown that 

provides a necessary and sufficient condition for stationarity, Thus, we need 
only show that the condition 6 < 1 and a8 > 0 implies that the process has 
a stationary distribution. 

We shall prove Theorem 3 in two steps. First we will show that the 
embedded Markov process ( X , )  is ergodic, so that it has a stationary 
distribution. In the next step, we shall consider the process X(t) for all t, and 
show that the fraction of time that the process spends in a given state 
k converges to a limit, which is the stationary probability of state k. 

Firstly, observe that a > 0 implies 4 = d(a) < 1. Consequently, for any 
6 < 1, the expectation E(X, ( X,) given in (8) can be bounded by a constant 
free of n, that is 

(9) supE(X, I X,) < K < a. 
n 

Now in the Markov chain (X,) every state is accessible from every other state 
in one step, that is, P(X,+, = j 1 X, = i) = pij > 0 for all (i, j). It follows that 
the chain is aperiodic and irreducible (see [7]). To show that (X,) is ergodic, it 
suffices to show that one state, say 0, is ergodic. Let = P{X, = 0 I X, = 0). 
It suffices to show that lim infpgh > 0, since then the series Cn pb"E, will diverge 
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(see [?I), From (9) it follows that if 0 < y < 1, then for some A = A(y) the 
inequality P{Xn 6 A I X, = 0) l - y  holds for all n. Let 

so that T > 0, since every state is accessible in one step from every other state. 
We may now write 

= C P ( X n  = 0 I X n - ,  = j)P(X,-l = j I Xo = 0) 
j 

2 P{Xn = 01 Xnlz =j)P(Xn-l = j I Xo=O} > r ( l - y ) > Q  
j < A  

This shows that {X,) is ergodic. 
To complete the proof of Theorem 3, let us fix k, and let be the total 

time spent in state k during the n-th cycle (working and repair periods). The 
distribution of Ir, depends on n only through X,-l, that is, 

P ( ~ d u ( X n - 1 = j 3 = P ( V m / , u l X X , - 1 = j )  f o r a l l j .  

Moreover, for t in the (n+ 1)-st cycle, let q:+l be the total time spent in state 
k between the beginning of this cycle and t. Consequently, for t in the (n+ 1)-st 
cycle, the proportion of time spent in state k is 

We shall show that z,(t) converges almost surely to some limit as.t + ao. We 
have 

On the other hand, we have 

Standard argument shows that 
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Since G+ < S,+ + R,+ we also have 

It remains to show the a.s. convergence of the ratio 

that is, proportions n,(t) along the subsequence (ti, i = 1 ,  2 ,  . . .) of random 
times, where t, = S , + R l +  ... +S,+Rn. 

Writing (10) in the form (CVJn)/[(C SJn)+(C Ri/nfl we see that the 
denominator converges a.s. to l / a +  1/P. In the numerator, we may group the 
terms according to the values of Xj, so that it becomes 

where qti) is the amount of time spent in state k during the i-th cycle that 
started with Xi = j out of N(J]  such cycles. 

Vy),  Vp7, . . . are now i.i.d. for each j. Since N ( j )  -+ a~ a.s. as n + a, the 
term in brackets tends a.s. to EIVl I X, = j], while N ( j ) / n  converge a.s. to the 
stationary distribution of {X,}. Consequently, (10) converges as. s 

A rather remarkable feature of this theorem is that any genuine dis- 
couragement at the time of the breakdowns (even 6 = 0.999) will imply 
stationarity, independent of the values of any other parameters. For example, 
this allows the queue to grow quite rapidly between breakdowns (i.e. large A, 
small p, and 0 near 1). The heuristic argument is that discouragement depletes 
the queue at a level proportional to its size, while other changes in the queue 
happen at a constant rate. 

3. Probability of service and expected waiting times. In our model, the 
feature of discouragement makes the probability that a customer is eventually 
served less than one. 

Let Q, be the probability that a customer is eventually served, if he joined 
the queue at a time when there were n persons in the system (so that he was the 
(n+ 1)-st in priority to be served). The probability Q, does not depend on the 
time when the customer joins the queue: if he joins the queue during a repair 
period, he will still have the (n + 1)-st priority at the start of the working period. 
On the other hand, if he joins the queue during a working period, then the 
memoryless property of S makes it equivalent to joining the queue at the start 
of a working period, which will be assumed in the sequel. 
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Observe first that we have, conditioning on the duration of the first 
working period, 

m 

Q, = 4 ~ e - ~ ~ P ( ( n  + 1)-st priority customer is eventually served I S = t )  dt 
0 

In this expression, the first term represents the probability of completing 
the service during the first working period. In the second term, m stands for 
a number of persons served during the first working period, while k is the 
number of customers (in front of the customer in question) who decide to 
remain in the system at the time of the breakdown. The factor 6 in front of the 
second term corresponds to the fact that the customer in question also has the 
option of leaving the queue at the beginning of the repair period. 

Finally, by evaluating the integral and solving for Q,, we get 

For example, taking n = 0 in (11) we get 

and taking n = 1 gives 

Subsequent Qn7s may be found recursively from (11). 
Let us remark that Q, is the probability that the customer will not become 

discouraged, a property we call stubbornness. We shall now study the expected 
waiting time E(W,) of a stubborn customer, who joins the queue at a time when 
there are already n persons in the system. Once again, we wiU assume that the 
customer in question arrives at the start of the working period. In the case of 
an arrival during a repair period, we need to add 1/b to the formulas for E(Wn) 
developed below. To find a recursive formula for E(W,), we simply condition on 
what happens first: the end of a service (with probability p/(a+p)) or 
a breakdown (with probability u/(a+p)). Thus, defining E(W-,) = 0, we have 
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For example, E( W,) = I/[,up/(cl+ P) ]  which can be seen by direct reason- 
ing to be the expected time to remain in a system subject to breakdowns if one 
is currently being served (see, e.g., [I]). 

A similar conditioning argument can be used to derive recursive equations 
for the variance of Wn. 

To obtain ap approximation for E(W,) valid for large n, we first apply 
Jensen's inequality to the sum in (13) to get 

Applying (14) k times, and extending the notation to non-integer indices, we 
obtain 

Taking k = -log(n)/log (a), so that n = l/Sk, and dropping the sum, we arrive 
at a first order approximation 

where, from (13), 

Finally, substituting the approximation (16) back into the sum in (15), we 
obtain the second order approximation 

Notice that the expressions (l l j(17) are all valid for the G/M/l queue 
since they do not involve the arrival process. 

To extend our results to a G/G/l queue with general random lengths of 
repair and working periods, the (n+ 1)-st priority customer we-follow must 
arrive at the beginning of a working period. Also we need to assume that the 
customer being served at the time of the previous breakdown was discouraged. 

For example, in the integral leading to (1 1) we have to replace ~ e - ~  by the 
density S of duration of the working period and replace [(pt)i/j!]e-w by the 
probability that exactly j customers are served between 0 and t (or, equiva- 
lently, Gj(t) - G j ,  (t), where G,(t) is the cdf of the k-fold convolution of the 
service time distribution). 

This paper has introduced the concept of customer discouragement into 
queueing models with breakdowns. Our process has a stationary distribution 
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as long as any discouragement exists. This contrasts with systems lacking 
customer discouragement where the queue will grow without bounds if the 
arrival rate exceeds the service rate. 

Customer discouragement can instantaneously severely deplete the queue. 
However, our results, together with those of an extensive simulation study 131, 
show that important properties of the system in the steady state are still 
smooth functions of the parameters. 
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