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ON THE DISTRIBUTION OF A USEFUL MAXIMAL INVARIANT

BY

ADAM CMIEL AnNp ZBIGNIEW SZKUTNIK (KRAKOW)

Abstract. The Wijsman theorem and a characterization of a quo-
tient measure by invariance, due to Andersson, are used to describe
exact distributions of some maximal invariants especially useful in the
context of testing multivariate normality. Some possible applications
are indicated. ~ T

1. Introduction. Let X be a (p, n)-matrix. In some statistical testing
problems (cf. [87) it is of interest to study the group G* of transformations
acting on RP" according to gX = CX + b1}, Ce UT(p) being the group of upper
triangular (p, p)-matrices with positive diagonal, beR?, 1T =(1,..., 1)eR"
Since, under mild restrictions, each invariant test has a factorization through
the so-called maximal invariant (see [6]), the construction of maximal
invariants and the derivation of their distributions are important in the context
of invariant testing problems. Moreover, most powerful invariant tests are
maximin in the cases where the Hunt-Stein theorem is applicable. This is the
case of G* For applications see [9].

In this paper, we construct some maximal invariants under G*, derive
their distributions and indicate some practical applications.

2. A maximal invariant and its distribution. Let M, = XA(XA)Y, where
A is an (n, n—1)}-matrix given by

I T 0]
0 1 0
A= ..
0
—1 —1 _—

If X is a random matrix with a probability distribution absolutely
continuous with respect to the Lebesgue measure on R?", n > p, then M, is a.s.
nonsingular (see [2]). Thus the matrix L e UT(p) satisfying M, = L L% is as.
uniquely determined. Let B, = L7 X A.

ProrosITION 1. B, is a maximal invariant under G*.
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Proof A maximal invariant under G* can be constructed in two steps.
First, note that XA4 is a maximal invariant under translations and that the
action of UT(p) on X induces an action of UT(p) on X A. Hence it suffices to
show that a maximal invariant under the action Y — CY of UT(p) on R?"~ ),
Ypu-1y€RP"™D, CeUT(p), is B, = L; 'Y, where L,e UT(p) and YY" = L LJ.
This follows easily from the fo]lowmg con51derat10n Take Z =CY, C eUT(p)
Then

=CYY'C"=CL/(CL)" and L,= CLy

by the uniqueness of the Cholesky decomposition. Hence we have
B,=L;'C™'CY = B, and B, is an invariant. In order to show that B, is also
a maximal invariant assume that B, = B,. This implies L,'Y = L;'Z and
Y =CZ with C=L,L;'eUT(p), which completes the proof.

The (p, n—1)-matrix B, forms a part of an (n—1, n—1)-orthogonal
matrix. Denote by.v. the probabilistic Haar measure on the group SO(n—1) of
orthogonal matrices with determinant 1. Each element of SO(n—1) can be
identified with a point of an [(n—1)(n—2)/2]-dimensional Riemannian mani-
fold M,, and each matrix B, can be identified with a point of
a [p(2n—p—3)/2]-dimensional Riemannian submanifold M of M,. Let ¢ be
a transformation M, — M given by N

‘IROBI:B'{:....BE l]T B—’ B(p) = [BT ..... BT]TEEDI

B, being row vectors in R"! i=1,...,n— 1), and let us define a measure u on
M by u = tv. It is clear that u remains invariant under the transformations

It is (up to multiplication by a constant) the unique measure on M with such
a property. This is a consequence of the well-known Weil theorem on the
existence and uniqueness of relatively invariant measures on left-homogeneous
spaces (cf. [2], Theorem 6.3 and Example 6.16, or [7], p. 138, Theorem 1).

Let P denote the distribution of the random matrix X, absolutely
continuous with respect to the Lebesgue measure A,, on R?", p = dP/dA,,,
p a density of the distribution of XA with respect to Ay,_4),, I1: R™ — I the
orbit projection T7(X) = B,, and II(P) the distribution of the maximal
invariant.

PROPOSITION 2. In the notation above:
' P
@ Al (P)fdp = cyp' § p(LB,) [] 8?72 "L,
’ ci=1
where the integration is performed with respect to the elements of

L=[l;]eUT(p) and c,,=2"Pril+r= 204 H r( 2’).

i=1
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Proof It is seen from the proof of Proposition 1 that B, is a maximal
invariant for UT(p) acting on the space of matrices Y = XA. The modular
function of UT(p) is

p

ALy =[] &,

i=1

Am-1yp i8 relatively invariant with multiplier (det Ly~ under the action of
UT(p) on RP®~1V: Y > LY, and « defined by "

P
do(L) =[] i ?~1dL
i=1
is a left Haar measure on UT(p). Using the Wijsman theorem ([1] [11]) we get
ecasily

dip) & 5 )
L. 2i+n-— p 2 TY)det T 1d T
g~ LLaR™ =2 [ pryet 7y da()
— [T@)R* =2 | BTL.B)[] & 2"rdT
i=1 - UTw) ie1 :

P
= | BBy [[ E7P72"dL,

UT(p) =1

where A is a measure on R*™®~ 1 such that

P
d}'(Y) = l—[ (Ly)izi_Zi—"+pd’1(n—1)p(Y)a
i=1
B is a right Haar masure on UT(p), and /8 is the so-called quotient measure.
In view of our previous remarks on the measure y, to show the proportionality
of 4/ and p it suffices to prove that A/f remains invariant under transfor-
mations (1). This may easily be deduced from the results contained in Section
5 of [1]. Consider the group K = HG with G = UT(p) and H = SO(n—1)
acting on the space R~ 1 of (p, n— 1) real matrices according to kY = AYB,
AeUT(p), BeSO(n—1), k = (B, A)eK. Since the actions of H and G com-
mute, the automorphism @,: g—hgh™! is the identity mapping and
mod @, = 1. Elementary calculations show that 4 is relatively invariant under
the action of K with multiplier 4, *. By virtue of Proposition 2 in [1] this is
equivalent to the invariance of 4/f under the action (1) of H = SO(n—1). In
order to find c,, take

P(Z) = (2m) P~ V2 exp{—0.5Tr ZZ"},

the density of the multivariate (p, n— 1) normal distribution, and integrate the
right-hand side of (2) over 9 with respect to u. We have B, = L;'Z, where
ZZ" = L_I%, L,eUT(p) and TrLB,(LB,)" = TrLL", since B,B; =1. Con-
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sequently,
Cop* W) (2m) P~ D72 fexp{—0.5Tr LL"} ]EI BmPm2rigl =1,
=1
Making use of the equality u(9) =1 and computing the integral we get the

value of c,,. A more explicit form of c,, is given in Section 4.

3. The normal case. Let X be distributed as N(M, 2 ® I,). Because of the
invariance we may assume M =0 and X = I,. Then

F(Y) = (2m) =2~ Di2(det AP/ exp{—0.5Tr YAY},

where A7'=[A;], 4j=1 for i#j and A;=2. Since detd =n"! and
A=1-n"11,1F, we get, using B_ BT =1,

dII(P)/du
o N P
= ¢pp(2m) TP D27 P2 [exp{ —0.5Tr L(I—n~*bb")L'} [] BP~2%4dL,
i=1

where b =[b,, ..., b,]" = B.1,_;. Define L,eUT(p) by I—n"'bb" = L, L§.
Taking T = LL, as a new variable in the integral with

oL/oT = 1 Lok’

we have the following
COROLLARY 1. If X is distributed as N(M, X®1,), then

)4
dII(P)/dp = n~P? ] (Lo)g #7772,
i=1

If p=2, then ,
dII(P)dp =n~'(1—n" 1 (b3 +53) """ 22)(1—n"'bj) "

For p>2 the formula becomes more complicated. It still depends,
however, only on the vector b. '

4. Parametrization by Euler’s angles. Let R; (1 <i<n—1,1<j<n~1,
i <j) be a rotation matrix from SO(n—1) defined as follows:

Rij)u = (Rij)jj = COos 01‘]: (Rij)ij = sin oija
(Rij)ji = —sin Hi_j, (Rij)kk =1

for k # i and k # j and all the remaining elements are equal to zero. It is easy to
check (cf. [4] and [10]) that for every matrix GeSO(n—1) the following
decomposition is valid:

3 G=G""2 _.GM,
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where G® =R;,_;...R;;+, with suitably chosen 6,,. Denote by ¢; (i =1,
..., n—1) the i-th vector of the usual canonical basis of R*~!. The vector of
Euler’s angles

EG = (012» feny 91,;.—1, 0235 ..., 92,::—1: veey 9n-2.n—1)

can be interpreted in the following way: 6,,, ..., 0;,-, are spherical coor-
dinates of :

G le, =(cosy,—y...c080,5, ..., 080 418N 0 »_5,sinb, ),

where 0< 8,, <2n, —n2 <0, <72, 3<k<n—1.
In the same way the angles 6;;.,, ..., 8;,—1 are spherical coordinates of

GV, .. .GMVG g
=(0,...,0,cos60; —1...c080;;41, ...,C080;,_,5in0; ,_5,sinb;,_,)T,

where 0 < 0;;43 <2m, —m/2<0; <w/f2, i+2<k<n—1.

This interpretation of Euler’s angles indicates an easy way of obtaining Ej;
for a given matrix Ge SO (n— 1). Passing from E; to G may easily be performed
according to (3).

Note that inequalities for ,; given above determine them uniquely and we
have a 1-1 correspondence between matrices G e SO(n—1) and vectors E;. We
will denote by the same letter v the Haar measure on SO(n—1) and the
corresponding measure on the space of Euler’s angles. Taking into account the
above representation of GeSO(n—1) we are able to express the density of
v with respect to the Lebesgue measure A, on the space of Euler’s angles in the
form

n—2 n—2
dvjdig, = [] Au; ] cosi™6;;+1, where A4,; = I'[(n—j)/2]/2n""13),
=1 i=j

There is also a 1-1 correspondence between matrices B, € M and subvec-
tors E, = (012, ..., 01015 -.s Oppi1, -- s Opn—1) Of Euler’s angles and we will -
again denote by the same letter p the measure tv and the corresponding
measure on the space of vectors E..

As a consequence of the above considerations we get finally for p <n—1

r n—2
du=T] Au [] cos'90;,41d0;,:4 4
j=1 i=j

which can be expressed in a more explicit form as

p n—2 .
) . du = ¢, H l—[ cos' V0;;1d0; 41,
i=1 i=j
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where
Crp

_ (2mEr2mupe -2 Rt —p—1)(n—p+1)!...(n—3)!, p even,
2= P M2+ 17 =210 P =1 (12— p— ) n—p+ ). (1—2)!, p odd.

Note that exactly the same constant c,, occurs in Proposition 2. It is
clear that E, also forms a maximal invariant under G*. A density of the
distribution of E_ with respect to the Lebesgue measure on RPZn—273)2
containing E_ is determined by (2) and (4). To find its value the matrix B,
corresponding to E, is needed. Such a B, can easily be obtained according to
(3) with E; = (E,, 0, ..., 0) after applying the transformation ¢ to the resulting
matrix G.

5. Another maximal invariant and its distribution. In some cases it is useful
to consider another - maximal -invariant for G* defined in [8]. Let
=(X-X)(X- X)T where X =n"'X1,1}. If X is a random matrix with
a probablhty distribution absolutely continuous with respect to the Lebesgue

define L e UT(p) by
S, =LY and B, =L;'(X-X).

B, is another maximal invariant for G*.

Let A =I—n"'1,1T and D be an orthogonal (n, n)-matrix with the last
row of the form (n~ %2, ..., n=1/2), The first n—1 rows of D form a matrix D.
Choose and fix such a D and note that D™D =4, X—X = XA and D is
a full-rank matrix. This implies that there exists a unique matrix U, u-1),
namely U = XD", such that X —X = UD. This equality establishes a 1-1
transformation from the space of (p, n)-matrices with rows orthogonal to I, to
the space of (p, n— 1)-matrices. Denote by B, the matrix constructed from U in
the same way as B, was constructed from X —X.

The uniqueness of the Cholesky decomposition and the fact that A is
idempotent imply that L, = [, and we have
() ‘B, =B,D,
which establishes a 1-1 correspondence between B, and B,. This enables us to
apply the results of Section 2 and describe the distribution of B, indirectly
through the distribution of B, and the transformation (5). The distribution of
B, is given by Proposition 2 with the replacement of B, by B, and of p(-) by the
density of the distribution of U.

In the normal case, the distribution of X being N(M, X ®I,), we may
take, because of invariance, M = 0 and X = I,. Then the distribution of U is
N(©,I,®I,-;). An inspection of the last part of the proof of Proposi-
tion 2 leads to the following
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COROLLARY 2. If the distribution of X is N(M, Z®1,), then the dis-
tribution of B, is y = tv with the density given by (4).

The computation of E given Euler’s angles of the corresponding B, is
performed in two steps

1. compute B, given Euler’s angles as described at the end of Section 4 in
the context of B,;

2. compute ﬁx given B, according to B, = B,D.

6. Some special cases and possible applications. In Section 5 we described
the distribution of the maximal invariant B, for normal X through the
marginal distribution of the subvector E, of E;, with E; being distributed
according to the probabilistic Haar measure. In this section the distribution of
B, for p=2 and two other distributions of X will be given.

Denote by £ the transformation family of distributions of X = UY
+mly, where Ue UT(2), me R? and the columns of (2, n) random matrix Y are
independently and identically distributed according to the probability density
function ¥/({,, {,) = exp{—({, +{,)} for {;, {, = 0 and zero otherwise. Analo-
gously we define the family of distributions £, taking (-, -) to be an indicator
function of the unit square. Because of the invariance, the distribution of B,
does not depend on the particular choice of P,e#;. The same is true for
P,e?,. So we can take P, and P, corresponding to U = I and m = (0, O)".
Put ug = II(Pg), py = H(Py) and recall that y = II{Py), Py=NM, Z®1,).

In [9] two functions I (-) and I (-) were found such that

dug/dp = CEIE(Ex) |b2min|1_" and  duy/dp = cyly (Ex)(blmax_bzmin)l_"a

where bspin and by, are the minimal and maximal elements, respectively, of
the second row of B,. This and the results of Section 5 yield the distributions of
B, when the dlstrlbutlon of X belongs to the family #; or 2.

The constants ¢, and ¢, are not given explicitly in [9] but can easily be
derived and are of the form '

o - [0=2)1P@ny"
§ (n—2)(n"

(2113)"_ 1
n*(n—1)>%(n—-2)

and ¢y =

The results obtained in this paper can be applied to the analysis of small
sample behaviour of G*-invariant tests for multinormality which are functions
of B, (see [8] and [97). This includes, e.g., finding a-critical values, say c,, for
tests of the form ¢(X) = I{T(B,) < c}, where I is the indicator function, and
T denotes any of G*-invariant test statistics studied in [8] and [9]. This is
equivalent to solving with respect to ¢, the equation

©) JI{T[B,0)] < c,}du@® =
where u is given by (4).
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The last part of Section 5 provides a way of computing B, (0) for a given
vector @ of Euler’s angles.

The power functions of the most powerful G"'-mvanant tests for binor-
mality (see [9]) can be written in the parametric form as follows:

x(t) = [I{T[B,(0)] < t}du(®),
y(&) = [ I{T[B. ()] = t}n(0)du(@),

where T, n are TF, dug/du or TF, duy/du, respectively. The test statistics
T¢ and T are given explicitly in [9]. x(¢) and y(z) are the size and the power,
respectively, of the test corresponding to the critical value ¢ (cf. also [5]).
Calculation of these power functions is particularly interesting since G* satisfies
the Hunt-Stein assumptions. Thus the most powerful invariant tests are
maximin and it is possible to construct maximin tests for approximate
normality taking suitably defined neighbourhoods of the hypotheses and using
results of [9] and [5].

The integrals in (6) and (7) must be computed numerically because the
regions in which the indicator functions are nonzero are complicated and do
not admit an analytical description. Some results of the above type will be
published separately.

Such results can, of course, also be obtained by classical Monte-Carlo
methods. Note, however, that finding, e.g., critical values in a Monte-Carlo
* simulation is, in fact, equivalent to computing by a Monte-Carlo method the
value of an integral over a pn-dimensional space and that the quality of
generating pseudorandom numbers from the normal and alternative dis-
tributions is equally crucial as difficult to control. Qur approach reduces the
dimension to p(2n—p—3)/2 and puts the whole problem in a more explicit
form. For small sample sizes, which are interesting in the context of T¢ and T,
it is even possible to apply nonstochastic procedures of numerical 1ntegrat10n,
which makes the control of accuracy more reliable.

™

REFERENCES

[1] S. Andersson, Distributions of maximal invariants usmg quonent measures, Ann. Statist. 10
(1982), pp. 955-961.

[2] M. L. Eaton, Multivariate Statistics. A Vector Space :Approach, New York 1983.

(3] — and M. D. Perlman, The nonsingularity of generallzed sample covariance matrices, Ann.
Statist. 1 (1973), pp. 710-717.

[41 W. Girko, Theory of Random Determmam:s (in Russian), Kiev 1980.

(5] R. Hafner, Construction of least favourable pairs of distributions and of robust tests Jor
contamination neighbourhoods, Math. Operationsforsch. Statlst Ser. Statistics 13 (1982), pp.
. 47-56.

[6] E. L. Lehmann, Testing Statistical Hypotheses New York 1959.



A useful maximal invariant . 65

[71 L. Nachbin, The Haar Integral, Princeton 1965.

[8] Z. Szkutnik, On invariant tests for multidimensional normality, Probab, Math. Statist.
8 (1987), pp. 1-10. .

[91 — Most powerful invariant tests for binormality, Ann. Statist. 16 (1988), pp. 292-301.

[10] N. Vilenkin, Special Functions and the Theory of Group Representations (in Russian),
Moscow 1965. '

[11] R. A. Wijsman, Proper action in steps, with application to density ratios of maximal
invariants, Ann. Statist. 13 (1985), pp. 395-402.

Institute of Mathematics

University of Mining and Metallurgy
Al. Mickiewicza 30

30-065 Krakow, Poland

o Received on 13.9.1988;
..~ . .new version on 23.6.1989

5 — PAMS 121







