PROBABILITY
AND
MATHEMATICAL STATISTICS

Vol, 11, Fasc, 1 (1990), p. 133-138

REMARKS ON BANACH SPACES OF S-COTYPE p*
BY

DANG HUNG THANG (Hanoi)

Abstract. This paper continues the investigations of [10]. There
are examined relations between the class of Banach spaces of S-cotype s
p, the class of Banach spaces of M-cotype p in the sense of Mouchtari
[7] and the class ¥, of Banach spaces defined by Tien and Weron [11].

1. Introduction. Let E be a Banach space with dual E'. E is said to be of
stable type p (0 < p < 2) if, for every sequence (x,) in E with ) |x,[? < oo,
Y x, 0% converges as., where 6 are iid. symmetric p-stable random
variables. For p = 2 stable type 2 is equivalent to type 2. E is said to be of
cotype 2 if, for every sequence (x,) in E such that ) x, 0% converges a.s.,
Y lix,I? < co. It is known that an analogous definition of stable cotype
p (0 < p < 2) by replacing the sequence {0} by the sequence {#¥'} does not
restrict the class of Banach spaces, since the a.s. convergence of ) x, 0% implies
that } |x,||? is finite for p < 2.

In attempting to extend the results of [1] to p-stable measures, Tien and
Weron [11] defined a class V, (1 < p < 2) of Banach spaces, and we have
defined the notion of S-cotype p [10]. From another motivation, Mouchtari
[7] has introduced the notion of M-cotype p.

Our aim is to study the relation between the class M, of spaces of M-cotype
p, the class §, of spaces of S-cotype p and the class V,. The main
results of the paper are the inclusions M, < ¥, = §, < (! (1€p<2),

£>0
from which we obtain the inclusion ¥, < ¥V, for p < g (going up phenomenon).
By this phenomenon we can refer to a Banach space in the class ¥, as-a Banach
space of V-cotype p. It is interesting to know whether the three possible notions
of cotype coincide.

“pte

2. Preliminaries and notation. Let E be a Banach space with dual E'. We say
that E is a Sazonov space if there exists a topology 7 on E such that a positive
definite function f with f(0) = 1 is Z -continuous iff it"is a characteristic

* Partially written during the author's stay at the Institute of Mathematics of the University
of Wroclaw (Poland) in the last quarter of 1985,
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function (ch. f.) of a probability measure on E. It has been shown [§] that every
Sazonov space can be embedded into L, and, conversely, if a Banach space
with the metric approximation property embeds in L, then it is a Sazonov
space. In particular, every closed subspace of L,(1 < p< 2)isa Sazonov space,
while, for p> 2, L, is not a Sazonov space.

For a real number p (0 < p < 2) we denote by X, a closed subspace of L,.
A, (E', X ) denotes the set of linear continuous operators T from E' into X, for
which the function f(a) = exp{—||Ta||?}, ae E/, is the ch. f. of a probability
measure on E. An operator T in A (F, X)) for some X, is called a
A-operator on E'. Let  , denote the coarsest topology on E for which all the
ch. f’s of symmetric p-stable measure are continuous. A Banach space E is said
to be of M-cotype p(0 < p < 2), provided that the function f: E' — C is the ch. {.
of a probability measure on E, if it is positive definite, 7 -continuous and
f(0) = 1. Equivalently, a Banach space E is of M-cotype p iff any 7 -con-
tinuous linear mapping 4 from E' into Ly (2, P) is decomposable. We remind
that a linear mapping A from E' into Ly(£2, P) is said to be decomposable if
there exists an E-valued random variable ¢ such that

Plo: Aa(w) = {p(w),ad} =1 for all acFE.

Mouchtari [7] has shown that M-cotype 2 spaces are exactly cotype
2 spaces and M-cotype p spaces, for some p < 1, are exactly Sazonov spaces.

Following [11] we say that a Banach space E is in the class V, (0 < p < 2)if
for every symmetric p-stable measure p and for every symmetric p-stable
cylindrical measure v the inequality |1 —V(a)] < |[1—ji(a)| for all ac E' implies
that v is a Radon measure, where ji(a) and ¥(a) are the ch. £’s of u and v,
respectively.

Finally, a Banach space E is said to be of S-cotype p (0 < p < 2) if for every
sequence (x,) in E and every symmetric p-stable measure z on E the inequality

1—exp{—Y I{x,, @))F} < 1—fi(a) for all ackE

implies that ) [x,||” is finite.

In [10] it was shown that E is of S-cotype 2 iff it is of cotype 2. A Banach
space with the approximation property is of S-cotype p for p< 1 iff it is
a Sazonov space.

3. Relation between spaces of M-cotype p, spaces of S-cotype p and spaces in
the class V,.

1. Tueorem. Let M, and S, denote the class of spaces of M-cotype p and the
class of spaces of S-cotype p, respectively. Then

M,cV,=8§,c N M,, (I<sp<2.
>0

Proof. (a) M, < ¥,. Let E be a Banach space of M-cotype p and suppose
that y is a symmetric p-stable measure on E, and v is a symmetric p-stable
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cylindrical measure on E such that [1—¥(a)| < |1 —ji(a)| for all aeE". From
this inequality it follows that ¥(a) is J ,-continuous. Since E is of M-cotype
p, ¥(a) is a ch. f. of a Radon measure on E. This shows that E belongs to the
class V.

(b) ¥V, = §,. Let E be in the class ¥, and let (x,) be a sequence in E such that

1—exp {—) [<X,, I} < 1—f(a) for all ackE,

where p is a symmetric p-stable measure on E.
Let v be the p-stable cylindrical measure with the ch. f

9(@) = exp {~ 3 K, DI}

By the assumption that E belongs to V};, ¥(a) is a ch. f. of a Radon measure
on E. From the Tt5-Nisio theorem it follows that the series ¥ x, 0 converges
a.s. Since p <2, we have ) |x,||” < co. Hence E is of S-cotype p.

© S, < ﬂ M,.,. We split the proof into two steps.

(i) Suppase that E is of S-cotype p (1 € p < 2). Then every symmetric g-stable
(g > p) measure on E is the continuous image of a symmetric g-stable measure on
some Sazonov space.

Indeed, let u be a symmetric g-stable measure on E (g > p) with the ch. f.
fi(a) = exp {— || Ta|*}, where Te A, (E', L)). Because of g > p, by Theorem 2 in
[71, the function exp { — || Ta||?} is also the ch. f. of a Radon measure on E. Thus
Te A (E, L). Since E is of S-cotype p by Theorem 3.3 in [10], the adjoint T":
L, - E is p-summing, By the Pietsch factorization theorem, there exists
a factonzamon T*: L % 5 5 E, where S is a closed subspace of L, V: S — E is

a linear continuous operator and U: L, — § is a p-summing aperator.

The operator U, being p-summing, is alsn r-summing for 1 < p <r < gq. Let
7, be the canomcal cyimdncal g-stable measure on L; with the ch. f
axp{miixﬂq} xeL,. y, is of the scalar order r, ie.

sup f [Kx, I dy, (y) < 0.
=il =1L;

Because U is r-summing (r > 1) in view of the Schwartz radonification
theorem [9], v=U(y,) is a Radon measure on S. We have u= T*(y,)
= VUG = V()

v is a symmetric g-stable measure on § and § is a Sazonov space (since
every closed subspace of L, (1 <p<2)is a Sazonov space).

(i) Suppose that every symmetric p-stable measure on a Banach space E is
a continuous image of a symmetric p-siable measure on some Sazonov space. Then
E is of M-cotype p.

Indeed, let A be a J ,-continuous linear mapping {rom E’ into L,(Q, P).
Then, given ¢ > 0, there exxsts a Apaoperator T, on E' such that [T af <1
implies [|Aal, < e, where |||, i3 the F-norm in Ly{(2, P) metrizing the
topology of convergence in probability.
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By Lemma 5.2 in [3] we can choose a single A -operator T on E’ satisfying
the following condition:

(1.1)  For every ¢ > 0 there exists a & > 0 such that |Aal, < & whenever
| Tall < 6.

Let p be a symmetric p-stable measure generated by 7, ie. jfi(a)=
exp { — || Tal|*}, ae E'. By the assumption, there exist a Sazonov space S, a linear
continuous operator V: § — E and a symmetric p-stable measure v on § such
that u = V(v). Without loss of the generality we can assume that V is 1-1. Let
H be a A-operator on §' generating v, ie. ¥(b) = exp {—||Hb|?}, beS'. We
have fi(a) = V (v)(a) = ¥(V*a) = exp {— | HV*a||?}. Hence

(1.2) | Ta)} = |[HV*al| for all aeE"

Define a linear mapping G from V*(E') into Ly(R2, P) by G(V*a) = Aa.

G is well-defined on V*(E’). Indeed, if V*a, = V*a,, then by (1.2) we have
| T(a; —a,)l| =0, which, together with (1.1), enables us to conclude that
lA{a, —a)llp =0, ie. Aa; = Aa, in Ly(2, P). In view of (1.1), for every ¢ > 0
there exists a 4 >0 such that |G(b)|l, <& whenever |Hb| <d for all
be V*(E'). In other words, G is J -continuous on V*(E') < §'. The linearity of
G is obvious. Since V*(E') is dense in §', G admits a J ,-continuous linear
extension on the whole §'. Because S is of M-cotype p (every Sazonov space is
of M-cotype p for all p), G is decomposed by an S-valued random variable ¢,
Cie. G(b)(w) = {p(w),b) P-as. for all beS. Hence, for all ack,
A(a)(w) = G(V*a)(w) = {p(w), V*a) = (Vo (w), a) P-as., which shows that
A is decomposable, as desired.

Thus the proof of Theorem 1 is completed.

From Theorem 1 we derive:

2. CoroLLary. If a Banach space E belongs o the class V,, then it also
belongs to the class V, for 1< p<gq.

3. CororLary. The space I, (I), where 1 S p <t <s<gq,isin the class V,,
but not in the class V,.

Proof By Theorem 7 in [7], I (1) is of M-cotype g, hence it is in the class
¥V, by Theorem 1. Assume that [, () is in the class V. By Proposition 8 in [7], [,
(1) is of stable type p, so it imbeds in L, by Theorem 4.5 in [10]. But this
contradicts Proposition 9 in [7].

Thus, it is reasonable to refer to a Banach space in the class V), as a Banach
space of V-cotype p.

4. Concluding remarks. 1. If E is of stable type p (1 <p < 2), then, by
Proposition 4.8 in [10] and Theorem 1, the following statements are equiva-
lent:

(1) E is of M-cotype p.

(2) E is of V-cotype p.

(3) E is of S-cotype p.
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1t is natoral to ask

Prosiem 1. Are the three possible notions of cotype equivalent in
general?

2. Garling [2] characterized spaces of cotype 2 by the following property:
a Banach space E is of cotype 2 iff every symmetric Gaussian measure on
E is the continuous image of a symmetric Gaussian measure on a Hilbert
space. '

It is known that every Hilbert space is a Sazonov space. On the other
hand, because every Sazonov space S is of cotype 2, every symmetric
Gaussian measure on § is the continuous image of a symmetric Gaussian
measure on a Hilbert space. Then Garling’s theorem can be stated as follows:

A Banach space E is of cotype 2 iff every symmetric Gaussian measure on E is
the continuous image of a symmetric Gaussian measure on a Sazonov space.

ProsrLem 2. Is it true that a Banach space E is of S-cotype p iff every
symmetric p-stable measure on E is the continuous image of a symmetric
p-stable measure on a Sazonov space?

In the proof of Theorem ! we have shown that:

1° if every symmetric p-stable measure on E is the continuous image of
a symmetric p-stable measure on a Sazonov space, then E is of S-cotype p;

2° if E is of S-cotype (p—¢), p > 1, then every symmetric p-stable measure
on E is the continuous image of a symmetric p-stable measure on a Sazonov
space.

It should be noted that if the answer to Problem 2 is positive, then the
answer to Problem 1 is also positive.

Acknowledgment. I am indebted to Professor Aleksander Weren for many
valuable discussions during the preparation of this paper.
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