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1 Introduction

Hrushovski gave a counterexample to

the Zilber’s conjecture on strongly minimal sets

by Generic Relational Structures, i.e.

relational countable structures constructed by

amalgamating relational finite structures.

Generic relational structures are usually · · ·

CM-TRIVIAL.
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To show the CM-triviality

of generic structures, we needed two steps.

• 1st step:

Show weak elimination of imaginaries.

• 2nd step:

Working in the real sort, show CM-triviality.
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Following these two steps,

I proved CM-triviality of

Herwig’s weight ω small theory, and

Baldwin-Shi’s stable generic structures.
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A question comes up :

Is there a way to show CM-triviality without

showing Weak Elimination of Imaginaries?

I find the following answer.
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THE MAIN RESULT

In simple theories with elimination of hyper-

imaginaries,

CM-triviality in the real sort (I will define)

⇓
Geometric elimination of imaginaries

+

CM-triviality in the original sense, firstly

introduced by Hrushovski.
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2 Set-up

From now on, let T be a simple theory with

elimination of hyperimaginaries

and M be a sufficiently saturated model of T.

(Hyper-)imaginary elements are equivalence

classes of (type-)definable equivalence relations.

We work in M
eq

, the eq-structure, consisting

of imaginary elements.
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3 CM-triviality

Hrushovski’s Definition for CM-triviality

T is CM-trivial, if for any a,A,B ⊂ M
eq

with acleq(aA) ∩ acleq(B) = acleq(A),

Cb(stp(a/A)) ⊆ acleq(Cb(stp(a/B))).

• acleq(∗) denotes algebraic closure in M
eq
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Equivalently,

for any a, A = acleq(A), B = acleq(B) ⊂ M
eq

,

a |⌣
A

B ⇒ a |⌣
A∩acleq(a,B)

B.

• We are working in the eq-structure,

not in the real sort.
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My Definition for CM-triviality

T is CM-trivial in the real sort, if,

for any ā, A = acl(A), B = acl(B) ⊂ M,

ā |⌣
A

B ⇒ ā |⌣
A∩acl(ā,B)

B.

• Notice that everything is in the real sort.
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IND/I

T has the independence over intersections (IND/I),

if, for any ā, A = acl(A), B = acl(B) ⊂ M

ā |⌣
A

B, ā |⌣
B

A ⇒ ā |⌣
A∩B

AB.

• Notice that everything is in the real sort.
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Proposition A

CM-triviality in the real sort ⇒ IND/I.
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The key point of the proof: Assume

ā |⌣A
B, ā |⌣B

A, A = acl(A), B = acl(B).

By ā |⌣B
AB, acl(ā,B) ∩ AB = B follows.

So we have

B ∩ A ⊆ acl(ā,B) ∩ A ⊆ (acl(ā,B) ∩ AB) ∩ A ⊆ B ∩ A.

By CM-triviality in the real sort, we have

ā |⌣
acl(ā,B)∩A

B.
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Proposition B IND/I ⇔ GEI.

Geometric Elimination of Imaginaries

means that

for any i∈ M
eq

, there exists ā ⊂ M such that

i∈ acleq(ā),

ā ∈ acleq(i).
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The proof of “IND/I ⇒ GEI.”

Fix i= āE. Take b̄, c̄ such that b̄, c̄ |= tp(ā/i)

and ā, b̄, c̄ are independent over i.

By ā |⌣ b̄
c̄, ā |⌣ c̄

b̄ and IND/I, we have

ā |⌣
acl(b̄)∩acl(c̄)

b̄, c̄.

Let A= acl(b̄) ∩ acl(c̄).

As i∈ dcleq(ā), we have “i∈ acleq(A)”.

By b̄ |⌣ i
c̄, we see “A⊆ acleq(i)”.
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Under GEI,

CM-triviality in the real sort=CM-triviality.

Main Theorem

CM-triviality in the real sort

⇓
GEI+CM-triviality.
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Two Remarks

(1) Simple generic structures have the follow-

ing NICE characterization of non-forking;

A |⌣
A∩B

B ⇔ A ⊗A∩B B = A ∪ B = clM(A ∪ B)

for any A = acl(A),B = acl(B) ⊂ M.
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From this, we can check that simple generic

structures are CM-trivial in the real sort.

Main Theorem directly shows the CM-triviality

of simple generic structures.
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(2)

CM-triviality in the real sort

̸⇑
CM-triviality in the original sense.

In [E], D.Evans gave an ω-categorical SU = 1

CM-trivial structure C without WEI interpreted

in an ω-categorical SU = 2 generic binary graph.

I checked C does not have GEI.
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Remark on IND/I

In pregeometric surgical theories, IND/I⇒GEI.

In O-minimal case, “IND/I⇒EI” only holds.
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ENDING : 4 Problems on CM-triviality

(1) In stable theories, does CM-triviality

imply CM-triviality in the real sort?
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(2) Is any superstable CM-trivial theory

ω-stable?

This is a generalization of Baldwin’s

Problem: Is any superstable ω-saturated generic

structure ω-stable?
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(3) Recall that n-ampleness is defined

in the eq-structures.

non-1-amlpleness ⇔ One-basedness ⇒
non-2-ampleness ⇔ CM-triviality ⇒
non-3-ampleness ⇒ non-4-ampleness ⇒ · · ·

• Define non-3-ampleness in the real sort.

And does it imply GEI?
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(4) In Zariski geometries, local modularity is

equivalent to CM-triviality.

• In O-minimal theories,

is local modularity equivalent to CM-triviality?
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