
Computational Complexity of NL1 with
Assumptions

Maria Bulińska
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Introduction

Lambek Calculus (associative and non-associative) was
introduced by Lambek in 1958 in order to consider formal
grammars as deductive systems.

The P-TIME decidability for Classical Non-associative Lambek
Calculus (NL) was established by de Groote and Lamarche in
2002.

Buszkowski in 2005 showed that systems of Non-associative
Lambek Calculus with finitely many nonlogical axioms are
decidable in polynomial time and grammars based on these
systems generate context-free languages.
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Introduction

We consider Non-associative Lambek Calculus with identity
and a finite set of nonlogical axioms and prove that such
system is decidable in polynomial time.

To obtain this result the method used by Buszkowski in
(2005) was adapted.

Maria Bulińska Computational Complexity of NL1 with Assumptions



Introduction

We consider Non-associative Lambek Calculus with identity
and a finite set of nonlogical axioms and prove that such
system is decidable in polynomial time.

To obtain this result the method used by Buszkowski in
(2005) was adapted.
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The formalism of NL1

Types of NL1:

At = {p, q, r, . . .} - the denumerable set of atoms (also called
primitive types)

Tp1 - the set of formulas (also called types):

1 ∈ Tp1,
At ⊆ Tp1,
if A,B ∈ Tp1, then
(A • B) ∈ Tp1, (A/B) ∈ Tp1, (A\B) ∈ Tp1, where binary
connectives \ , / , • , are called left residuation, right
residuation, and product, respectively.
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The formalism of NL1

Formula structures:
STR1 - the set of formula structures:

Λ ∈ STR1, where Λ denotes an empty structure

Tp1 ⊆ STR1; these formula structures are called atomic
formula structures

if X ,Y ∈ STR1, then (X ◦ Y ) ∈ STR1
We set (X ◦ Λ) = (Λ ◦ X ) = X .
Notations:

X [Y ] - a formula structure X with a distinguished
substructure Y

X [Z ] - the substitution of Z for Y in X
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Maria Bulińska Computational Complexity of NL1 with Assumptions



The formalism of NL1

Formula structures:
STR1 - the set of formula structures:

Λ ∈ STR1, where Λ denotes an empty structure

Tp1 ⊆ STR1; these formula structures are called atomic
formula structures

if X ,Y ∈ STR1, then (X ◦ Y ) ∈ STR1
We set (X ◦ Λ) = (Λ ◦ X ) = X .

Notations:

X [Y ] - a formula structure X with a distinguished
substructure Y

X [Z ] - the substitution of Z for Y in X
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The formalism of NL1

Gentzen-style axiomatization of NL1.
Sequents are formal expressions X → A such that A ∈ Tp1,
X ∈ STR1.

Axioms and rules of inference:

(Id) A→ A

(1R) Λ→ 1 (1L)
X[Λ]→ A

X[1]→ A
,

(•L)
X [A ◦ B]→ C

X [A • B]→ C
, (•R)

X → A; Y → B

X ◦ Y → A • B
,

(\L)
Y → A; X [B]→ C

X [Y ◦ (A\B)]→ C
, (\R)

A ◦ X → B

X → A\B
,
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Gentzen-style axiomatization of NL1

(/L)
X [A]→ C ; Y → B

X [(B/A) ◦ Y ]→ C
, (/R)

X ◦ B → A

X → A/B
,

(CUT)
Y → A; X [A]→ B

X [Y ]→ B
.

For any system S we write S ` X → A if the sequent X → A is
derivable in S.
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NL1 with assumptions

By NL1(Γ ) we denote the calculus NL1 with additional set Γ
of assumptions, where Γ is a finite set of sequents of the form
A→ B, and A,B ∈ Tp1.

We use in Γ sequents of the form A→ B for simplicity, but
the set Γ may consist of arbitrary sequents.

It is easy to show that for any finite set of sequents Γ there is
a set Γ′ of sequents of the form A→ B such that systems
NL1(Γ ) and NL1(Γ′ ) are equivalent.
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Remarks

The decidable procedure for NL1 rely on cut elimination which
yields the subformula property.

For the case of NL1(Γ ) cut elimination is not possible, hence
for this system subformula property is established in a
different way.
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T-sequents

Let T be a set of formulas closed under subformulas and such
that 1 ∈ T and all formulas appearing in Γ belong to T .

T -sequent - a sequent X → A such that A and all formulas
appearing in X belong to T .

We write: NL1(Γ) ` X →T A if a sequent X → A has a proof
in NL1(Γ) consisting of T -sequents only.
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Subformula property for NL1(Γ)

Lemma 1

For every T-sequents X → A,
NL1(Γ) ` X → A iff NL1(Γ) ` X →T A.

The most general algebraic models of NL1: residuated
groupoids with identity.

The model used in the proof of lemma 1: The residuated
groupoid with identity of cones over the given preordered
groupoid with identity.
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Remarks to the proof of lemma 1

The preordered groupoid considered in the proof is a structure
(M,≤, ◦,Λ), where

M is a set of all formula structures all of whose atomic
substructures belong to T and Λ ∈ M

Preordering ≤ is a reflexive and transitive closure of the
relation ≤b defined as follows:

Y [Z ] ≤b Y [Λ] if Z →T 1,
Y [Z ] ≤b Y [A] if Z →T A,
Y [A • B] ≤b Y [A ◦ B] if A • B ∈ T .
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Remarks to the proof of lemma 1

In the proof we use the fact, that every sequent provable in
NL1(Γ) is true in the model (C(M), µ), where

C(M) is the residuated groupoid of cones with identity over
preordered groupoid (M,≤, ◦,Λ) defined above,

An assignment µ on C(M) is defined by setting:

µ(p) = {X ∈ M : X →T p},

for all atoms p.
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Basic sequents

A sequent is said to be basic if it is a T -sequent of the form
Λ→ A, A→ B, A ◦ B → C .

We remaind that T is a finite set of formulas, closed under
subformulas and such that 1 ∈ T and T contains all formulas
appearing in Γ.

For such T we shall describe an effective procedure which
produces the set ST consists of all basic sequents derivable in
NL1(Γ).
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Construction of the set ST

Let S0 consists of

Λ→ 1

all T -sequents of the form (Id)

all sequents from Γ

all T -sequents of the form:

1 ◦ A→ A, A ◦ 1→ A,
A ◦ B → A • B,
A ◦ (A\B)→ B, (A/B) ◦ B → A.
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Construction of the set ST

Assume Sn has already been defined.
Sn+1 is Sn enriched with sequents resulting from the following
rules:

(S1) if (A ◦ B → C ) ∈ Sn and (A • B) ∈ T , then
(A • B → C ) ∈ Sn+1,

(S2) if (A ◦ X → C ) ∈ Sn and (A\C ) ∈ T , then
(X → A\C ) ∈ Sn+1,

(S3) if (X ◦ B → C ) ∈ Sn and (C/B) ∈ T , then
(X → C/B) ∈ Sn+1,

(S4) if (Λ→ A) ∈ Sn and (A ◦ X → C ) ∈ Sn, then
(X → C ) ∈ Sn+1,
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Construction of the set ST

(S5) if (Λ→ A) ∈ Sn and (X ◦ A→ C ) ∈ Sn, then
(X → C ) ∈ Sn+1,

(S6) if (A→ B) ∈ Sn and (B ◦ X → C ) ∈ Sn, then
(A ◦ X → C ) ∈ Sn+1,

(S7) if (A→ B) ∈ Sn and (X ◦ B → C ) ∈ Sn, then
(X ◦ A→ C ) ∈ Sn+1,

(S8) if (A ◦ B → C ) ∈ Sn and (C → D) ∈ Sn, then
(A ◦ B → D) ∈ Sn+1.

Clearly, Sn ⊆ Sn+1 for all n ≥ 0.
We define ST as the join of this chain.
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Properties of the set ST

ST =
⋃∞

n=0 Sn

ST is a set of basic sequents, hence it must be finite.

It yields ST = Sk+1, for the least k such that Sk = Sk+1, and
this k is not greater then the number of basic sequents.

Maria Bulińska Computational Complexity of NL1 with Assumptions



Properties of the set ST

ST =
⋃∞

n=0 Sn

ST is a set of basic sequents, hence it must be finite.

It yields ST = Sk+1, for the least k such that Sk = Sk+1, and
this k is not greater then the number of basic sequents.
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P-TIME decidability of ST

Fact

The set ST can be constructed in polynomial time.

Proof.

Let n be the cardinality of T .

There are n, n2 and n3 basic sequents of the form Λ→ A,
A→ B and A ◦ B → C , respectively.

Hence, we have m = n3 + n2 + n basic sequents.

The set S0 can be constructed in time 0(n2).

To get Si+1 from Si we must close Si under the rules
(S1)-(S8) which can be done in at most m3 steps for each
rule.

The least k such that ST = Sk is at most m.

Then finely, we can construct ST from T in time
0(m4) = 0(n12).
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To get Si+1 from Si we must close Si under the rules
(S1)-(S8) which can be done in at most m3 steps for each
rule.

The least k such that ST = Sk is at most m.

Then finely, we can construct ST from T in time
0(m4) = 0(n12).
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Auxiliary systems

Now we take into consideration two auxiliary systems.

System S(T ):

Axioms: all sequents from ST

Inference rule: (CUT)

System S(T )−:

Axioms: all sequents from ST

Inference rule: (CUT) with premises without empty
antecedents

Lemma 2

For any sequent X → A:

S(T ) ` X → A iff S(T )− ` X → A.
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Interpolation for S(T )

Lemat 3. Interpolation lemma for S(T )

If S(T ) ` X [Y ]→ A, then there exists D ∈ T such that

S(T ) ` Y → D and S(T ) ` X [D]→ A.

Lemma 4

For any T -sequent X → A:

NL1(Γ) ` X →T A iff S(T ) ` X → A.
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P-TIME decidbility of NL1(Γ)

Theorem 1

If Γ is finite, then NL1(Γ) is decidable in polynomial time.

Proof.

Let

Γ - a finite set of sequents of the form B → C
X → A - a sequent.
n - the number of logical constants and atoms in X → A
and Γ.

As T we choose the set of all subformulas of formulas
appearing in X → A, formulas appearing in Γ and 1 ∈ T .

Hence, T has n elements and we can construct it in time
0(n2).
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P-TIME decidbility of NL1(Γ)

By lemma 1 and 4 we have:
NL1(Γ) ` X → A iff X →T A,
X →T A iff S(T ) ` X → A.

Proofs in S(T ) are in fact derivation trees of a context-free
grammar whose production rules are the reversed sequents
from ST .

Checking derivability in context-free grammars is P-TIME
decidable. For example, by known CYK algorithm, it can be
done in time not exceed k · n3, where k is the size of ST .

The size of ST is at most 0(n3) and ST can be constructed in
0(n12).

Hence, the total time is 0(n12), i.e. NL1(Γ) is P-TIME decidable.
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Further results

Theorem 1 can also be proven for systems:

NL1P(Γ) - NL1(Γ) with the permutation rule

GLC(Γ) - Generalized Lambek Calculus with assumptions
enriched with the permutation rule and/or identity for some
product symbols

Maria Bulińska Computational Complexity of NL1 with Assumptions



Further results

Theorem 1 can also be proven for systems:

NL1P(Γ) - NL1(Γ) with the permutation rule

GLC(Γ) - Generalized Lambek Calculus with assumptions
enriched with the permutation rule and/or identity for some
product symbols
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