Computational Complexity of NL1 with Assumptions

Maria Bulińska

University of Warmia and Mazury, Olsztyn, Poland

Logic Colloquium, Wrocław, July 14-19, 2007

Table of contents

- Introduction and preliminaries
- ② The subformula property for $NL1(\Gamma)$ with respect to a set T
- **③** Construction of all basic sequents (for a fixed T) provable in $\mathrm{NL1}(\Gamma$)
- **1** Interpolation lemma for auxiliary system S(T)
- **5** Equivalence of S(T) and $NL1(\Gamma)$ for T-sequents
- **o** Computational complexity of $NL1(\Gamma)$ and its extensions
- Main Bibliography

• Lambek Calculus (associative and non-associative) was introduced by Lambek in 1958 in order to consider formal grammars as deductive systems.

- Lambek Calculus (associative and non-associative) was introduced by Lambek in 1958 in order to consider formal grammars as deductive systems.
- The P-TIME decidability for Classical Non-associative Lambek Calculus (NL) was established by de Groote and Lamarche in 2002.

- Lambek Calculus (associative and non-associative) was introduced by Lambek in 1958 in order to consider formal grammars as deductive systems.
- The P-TIME decidability for Classical Non-associative Lambek Calculus (NL) was established by de Groote and Lamarche in 2002.
- Buszkowski in 2005 showed that systems of Non-associative Lambek Calculus with finitely many nonlogical axioms are decidable in polynomial time and grammars based on these systems generate context-free languages.

 We consider Non-associative Lambek Calculus with identity and a finite set of nonlogical axioms and prove that such system is decidable in polynomial time.

- We consider Non-associative Lambek Calculus with identity and a finite set of nonlogical axioms and prove that such system is decidable in polynomial time.
- To obtain this result the method used by Buszkowski in (2005) was adapted.

Types of NL1:

 $\bullet \ At = \{p,q,r,\ldots\}$ - the denumerable set of atoms (also called primitive types)

Types of NL1:

- $At = \{p, q, r, ...\}$ the denumerable set of atoms (also called primitive types)
- \bullet Tp1 the set of formulas (also called types):
 - $1 \in Tp1$,
 - At \subseteq Tp1,
 - if $A, B \in \mathrm{Tp1}$, then
 - $(A \bullet B) \in \operatorname{Tp1}, (A/B) \in \operatorname{Tp1}, (A \setminus B) \in \operatorname{Tp1}$, where binary connectives \setminus , /, \bullet , are called *left residuation, right residuation*, and *product*, respectively.

Formula structures:

Formula structures:

STR1 - the set of formula structures:

 \bullet $\Lambda \in \mathrm{STR}1,$ where Λ denotes an empty structure

Formula structures:

- $\Lambda \in \mathrm{STR}1$, where Λ denotes an empty structure
- Tp1 ⊆ STR1; these formula structures are called atomic formula structures

Formula structures:

- $\Lambda \in \mathrm{STR1}$, where Λ denotes an empty structure
- Tp1 ⊆ STR1; these formula structures are called atomic formula structures
- if $X, Y \in STR1$, then $(X \circ Y) \in STR1$

Formula structures:

- $\Lambda \in \mathrm{STR1}$, where Λ denotes an empty structure
- $Tp1 \subseteq STR1$; these formula structures are called atomic formula structures
- if $X, Y \in STR1$, then $(X \circ Y) \in STR1$

We set
$$(X \circ \Lambda) = (\Lambda \circ X) = X$$
.

Formula structures:

STR1 - the set of formula structures:

- $\Lambda \in \mathrm{STR}1$, where Λ denotes an empty structure
- $Tp1 \subseteq STR1$; these formula structures are called atomic formula structures
- if $X, Y \in STR1$, then $(X \circ Y) \in STR1$

We set
$$(X \circ \Lambda) = (\Lambda \circ X) = X$$
.

Notations:

- X[Y] a formula structure X with a distinguished substructure Y
- X[Z] the substitution of Z for Y in X

Gentzen-style axiomatization of NL1. Sequents are formal expressions $X \to A$ such that $A \in \mathrm{Tp1}$, $X \in \mathrm{STR1}$.

Gentzen-style axiomatization of NL1.

Sequents are formal expressions $X \to A$ such that $A \in \mathrm{Tp1}$, $X \in \mathrm{STR1}$.

(Id)
$$A \rightarrow A$$

Gentzen-style axiomatization of NL1.

Sequents are formal expressions $X \to A$ such that $A \in \mathrm{Tp1}$, $X \in \mathrm{STR1}$.

(Id)
$$A \rightarrow A$$

$$(1R) \quad \Lambda \to 1 \qquad (1L) \quad \frac{\mathbf{X}[\Lambda] \to \mathbf{A}}{\mathbf{X}[1] \to \mathbf{A}},$$

Gentzen-style axiomatization of NL1.

Sequents are formal expressions $X \to A$ such that $A \in \mathrm{Tp1}$, $X \in \mathrm{STR1}$.

(Id)
$$A \rightarrow A$$

(1R)
$$\Lambda \to \mathbf{1}$$
 (1L) $\frac{\mathbf{X}[\Lambda] \to \mathbf{A}}{\mathbf{X}[1] \to \mathbf{A}}$,
(\bullet L) $\frac{X[A \circ B] \to C}{X[A \bullet B] \to C}$, (\bullet R) $\frac{X \to A; \quad Y \to B}{X \circ Y \to A \bullet B}$,

Gentzen-style axiomatization of NL1.

Sequents are formal expressions $X \to A$ such that $A \in \mathrm{Tp1}$, $X \in \mathrm{STR1}$.

(Id)
$$A \rightarrow A$$

(1R)
$$\Lambda \to \mathbf{1}$$
 (1L) $\frac{\mathbf{X}[\Lambda] \to \mathbf{A}}{\mathbf{X}[1] \to \mathbf{A}}$,
(\bullet L) $\frac{X[A \circ B] \to C}{X[A \bullet B] \to C}$, (\bullet R) $\frac{X \to A; \quad Y \to B}{X \circ Y \to A \bullet B}$,

$$(\backslash \mathbf{L}) \quad \frac{Y \to A; \quad X[B] \to C}{X[Y \circ (A \backslash B)] \to C}, \qquad \quad (\backslash \mathbf{R}) \quad \frac{A \circ X \to B}{X \to A \backslash B},$$

Gentzen-style axiomatization of NL1

$$(/L) \quad \frac{X[A] \to C; \quad Y \to B}{X[(B/A) \circ Y] \to C}, \qquad \qquad (/R) \quad \frac{X \circ B \to A}{X \to A/B},$$

Gentzen-style axiomatization of NL1

(/L)
$$\frac{X[A] \to C; Y \to B}{X[(B/A) \circ Y] \to C}$$
, (/R) $\frac{X \circ B \to A}{X \to A/B}$,
(CUT) $\frac{Y \to A; X[A] \to B}{X[Y] \to B}$.

Gentzen-style axiomatization of NL1

$$(/L) \quad \frac{X[A] \to C; \quad Y \to B}{X[(B/A) \circ Y] \to C}, \qquad (/R) \quad \frac{X \circ B \to A}{X \to A/B},$$

(CUT)
$$\frac{Y \to A; \quad X[A] \to B}{X[Y] \to B}$$
.

For any system S we write $S \vdash X \rightarrow A$ if the sequent $X \rightarrow A$ is derivable in S.

NL1 with assumptions

By NL1(Γ) we denote the calculus NL1 with additional set Γ
 of assumptions, where Γ is a finite set of sequents of the form
 A → B, and A, B ∈ Tp1.

NL1 with assumptions

- By NL1(Γ) we denote the calculus NL1 with additional set Γ of assumptions, where Γ is a finite set of sequents of the form A → B, and A, B ∈ Tp1.
- We use in Γ sequents of the form $A \to B$ for simplicity, but the set Γ may consist of arbitrary sequents.

NL1 with assumptions

- By NL1(Γ) we denote the calculus NL1 with additional set Γ
 of assumptions, where Γ is a finite set of sequents of the form
 A → B, and A, B ∈ Tp1.
- We use in Γ sequents of the form A → B for simplicity, but the set Γ may consist of arbitrary sequents.
- It is easy to show that for any finite set of sequents Γ there is a set Γ' of sequents of the form $A \to B$ such that systems $\mathrm{NL1}(\Gamma)$ and $\mathrm{NL1}(\Gamma')$ are equivalent.

Remarks

• The decidable procedure for NL1 rely on cut elimination which yields the subformula property.

Remarks

- The decidable procedure for NL1 rely on cut elimination which yields the subformula property.
- For the case of $\mathrm{NL1}(\Gamma)$ cut elimination is not possible, hence for this system subformula property is established in a different way.

T-sequents

• Let T be a set of formulas closed under subformulas and such that $\mathbf{1} \in T$ and all formulas appearing in Γ belong to T.

T-sequents

- Let T be a set of formulas closed under subformulas and such that $\mathbf{1} \in T$ and all formulas appearing in Γ belong to T.
- T-sequent a sequent $X \to A$ such that A and all formulas appearing in X belong to T.

T-sequents

- Let T be a set of formulas closed under subformulas and such that $\mathbf{1} \in T$ and all formulas appearing in Γ belong to T.
- T-sequent a sequent $X \to A$ such that A and all formulas appearing in X belong to T.
- We write: $NL1(\Gamma) \vdash X \to_{\mathcal{T}} A$ if a sequent $X \to A$ has a proof in $NL1(\Gamma)$ consisting of T-sequents only.

Subformula property for $NL1(\Gamma)$

Lemma 1

For every T-sequents $X \rightarrow A$,

$$\mathrm{NL1}(\Gamma) \vdash X \to A$$
 iff $\mathrm{NL1}(\Gamma) \vdash X \to_{\mathcal{T}} A$.

Subformula property for $NL1(\Gamma)$

Lemma 1

For every T-sequents $X \rightarrow A$,

$$NL1(\Gamma) \vdash X \to A$$
 iff $NL1(\Gamma) \vdash X \to_T A$.

 The most general algebraic models of NL1: residuated groupoids with identity.

Subformula property for $NL1(\Gamma)$

Lemma 1

For every T-sequents $X \to A$, $\mathrm{NL1}(\Gamma) \vdash X \to A$ iff $\mathrm{NL1}(\Gamma) \vdash X \to_T A$.

- The most general algebraic models of NL1: residuated groupoids with identity.
- The model used in the proof of lemma 1: The residuated groupoid with identity of cones over the given preordered groupoid with identity.

Remarks to the proof of lemma 1

The preordered groupoid considered in the proof is a structure $(M, \leq, \circ, \Lambda)$, where

- M is a set of all formula structures all of whose atomic substructures belong to T and $\Lambda \in M$
- Preordering \leq is a reflexive and transitive closure of the relation \leq_b defined as follows:
 - $Y[Z] \leq_b Y[\Lambda]$ if $Z \rightarrow_T \mathbf{1}$,
 - $Y[Z] \leq_b Y[A]$ if $Z \rightarrow_T A$,
 - $Y[A \bullet B] \leq_b Y[A \circ B]$ if $A \bullet B \in T$.

Remarks to the proof of lemma 1

In the proof we use the fact, that every sequent provable in $NL1(\Gamma)$ is true in the model $(\mathcal{C}(M), \mu)$, where

- C(M) is the residuated groupoid of cones with identity over preordered groupoid $(M, \leq, \circ, \Lambda)$ defined above,
- An assignment μ on $\mathcal{C}(M)$ is defined by setting:

$$\mu(p) = \{X \in M : X \to_{\mathcal{T}} p\},\$$

for all atoms p.

Basic sequents

A sequent is said to be *basic* if it is a *T*-sequent of the form $\Lambda \to A$, $A \to B$, $A \circ B \to C$.

Basic sequents

A sequent is said to be *basic* if it is a *T*-sequent of the form $\Lambda \to A$, $A \to B$, $A \circ B \to C$.

• We remaind that T is a finite set of formulas, closed under subformulas and such that $\mathbf{1} \in T$ and T contains all formulas appearing in Γ .

Basic sequents

A sequent is said to be *basic* if it is a *T*-sequent of the form $\Lambda \to A$, $A \to B$, $A \circ B \to C$.

- We remaind that T is a finite set of formulas, closed under subformulas and such that $\mathbf{1} \in T$ and T contains all formulas appearing in Γ .
- For such T we shall describe an effective procedure which produces the set S^T consists of all basic sequents derivable in $NL1(\Gamma)$.

Let S_0 consists of

 $\bullet \ \Lambda \to 1$

- $\bullet \ \Lambda \to \mathbf{1}$
- all *T*-sequents of the form (Id)

- $\bullet \ \Lambda \to \mathbf{1}$
- all *T*-sequents of the form (Id)
- all sequents from Γ

- $\bullet \ \Lambda \to \mathbf{1}$
- all T-sequents of the form (Id)
- all sequents from Γ
- all *T*-sequents of the form:
 - $\mathbf{1} \circ A \rightarrow A$, $A \circ \mathbf{1} \rightarrow A$,
 - $A \circ B \rightarrow A \bullet B$,
 - $A \circ (A \backslash B) \rightarrow B$, $(A/B) \circ B \rightarrow A$.

rules:

Assume S_n has already been defined. S_{n+1} is S_n enriched with sequents resulting from the following

Assume S_n has already been defined.

 S_{n+1} is S_n enriched with sequents resulting from the following rules:

- (S1) if $(A \circ B \to C) \in S_n$ and $(A \bullet B) \in T$, then $(A \bullet B \to C) \in S_{n+1}$,
- (S2) if $(A \circ X \to C) \in S_n$ and $(A \setminus C) \in T$, then $(X \to A \setminus C) \in S_{n+1}$,
- (S3) if $(X \circ B \to C) \in S_n$ and $(C/B) \in T$, then $(X \to C/B) \in S_{n+1}$,
- (S4) if $(\Lambda \to A) \in S_n$ and $(A \circ X \to C) \in S_n$, then $(X \to C) \in S_{n+1}$,

- (S5) if $(\Lambda \to A) \in S_n$ and $(X \circ A \to C) \in S_n$, then $(X \to C) \in S_{n+1}$,
- (S6) if $(A \to B) \in S_n$ and $(B \circ X \to C) \in S_n$, then $(A \circ X \to C) \in S_{n+1}$,
- (S7) if $(A \to B) \in S_n$ and $(X \circ B \to C) \in S_n$, then $(X \circ A \to C) \in S_{n+1}$,
- (S8) if $(A \circ B \to C) \in S_n$ and $(C \to D) \in S_n$, then $(A \circ B \to D) \in S_{n+1}$.

- (S5) if $(\Lambda \to A) \in S_n$ and $(X \circ A \to C) \in S_n$, then $(X \to C) \in S_{n+1}$,
- (S6) if $(A \to B) \in S_n$ and $(B \circ X \to C) \in S_n$, then $(A \circ X \to C) \in S_{n+1}$,
- (S7) if $(A \to B) \in S_n$ and $(X \circ B \to C) \in S_n$, then $(X \circ A \to C) \in S_{n+1}$,
- (S8) if $(A \circ B \to C) \in S_n$ and $(C \to D) \in S_n$, then $(A \circ B \to D) \in S_{n+1}$.

Clearly, $S_n \subseteq S_{n+1}$ for all $n \ge 0$.

We define S^T as the join of this chain.

Properties of the set S^T

$$S^T = \bigcup_{n=0}^{\infty} S_n$$

Properties of the set S^T

$$S^T = \bigcup_{n=0}^{\infty} S_n$$

 \bullet S^T is a set of basic sequents, hence it must be finite.

Properties of the set S^T

$$S^T = \bigcup_{n=0}^{\infty} S_n$$

- S^T is a set of basic sequents, hence it must be finite.
- It yields $S^T = S_{k+1}$, for the least k such that $S_k = S_{k+1}$, and this k is not greater then the number of basic sequents.

Fact

The set S^T can be constructed in polynomial time.

Fact

The set S^T can be constructed in polynomial time.

Proof.

• Let n be the cardinality of T.

Fact

The set S^T can be constructed in polynomial time.

- Let n be the cardinality of T.
- There are n, n^2 and n^3 basic sequents of the form $\Lambda \to A$, $A \to B$ and $A \circ B \to C$, respectively.

Fact

The set S^T can be constructed in polynomial time.

- Let n be the cardinality of T.
- There are n, n^2 and n^3 basic sequents of the form $\Lambda \to A$, $A \to B$ and $A \circ B \to C$, respectively.
- Hence, we have $m = n^3 + n^2 + n$ basic sequents.

Fact

The set S^T can be constructed in polynomial time.

- Let n be the cardinality of T.
- There are n, n^2 and n^3 basic sequents of the form $\Lambda \to A$, $A \to B$ and $A \circ B \to C$, respectively.
- Hence, we have $m = n^3 + n^2 + n$ basic sequents.
- The set S_0 can be constructed in time $O(n^2)$.

Fact

The set S^T can be constructed in polynomial time.

- Let n be the cardinality of T.
- There are n, n^2 and n^3 basic sequents of the form $\Lambda \to A$, $A \to B$ and $A \circ B \to C$, respectively.
- Hence, we have $m = n^3 + n^2 + n$ basic sequents.
- The set S_0 can be constructed in time $O(n^2)$.
- To get S_{i+1} from S_i we must close S_i under the rules (S1)-(S8) which can be done in at most m^3 steps for each rule.

Fact

The set S^T can be constructed in polynomial time.

- Let n be the cardinality of T.
- There are n, n^2 and n^3 basic sequents of the form $\Lambda \to A$, $A \to B$ and $A \circ B \to C$, respectively.
- Hence, we have $m = n^3 + n^2 + n$ basic sequents.
- The set S_0 can be constructed in time $O(n^2)$.
- To get S_{i+1} from S_i we must close S_i under the rules (S1)-(S8) which can be done in at most m^3 steps for each rule.
- The least k such that $S^T = S_k$ is at most m.

Fact

The set S^T can be constructed in polynomial time.

- Let n be the cardinality of T.
- There are n, n^2 and n^3 basic sequents of the form $\Lambda \to A$, $A \to B$ and $A \circ B \to C$, respectively.
- Hence, we have $m = n^3 + n^2 + n$ basic sequents.
- The set S_0 can be constructed in time $O(n^2)$.
- To get S_{i+1} from S_i we must close S_i under the rules (S1)-(S8) which can be done in at most m^3 steps for each rule.
- The least k such that $S^T = S_k$ is at most m.
- Then finely, we can construct S^T from T in time $0(m^4) = 0(n^{12})$.

Auxiliary systems

Now we take into consideration two auxiliary systems.

System S(T):

- Axioms: all sequents from S^T
- Inference rule: (CUT)

Auxiliary systems

Now we take into consideration two auxiliary systems.

System S(T):

- Axioms: all sequents from S^T
- Inference rule: (CUT)

System $S(T)^-$:

- Axioms: all sequents from S^T
- Inference rule: (CUT) with premises without empty antecedents

Auxiliary systems

Now we take into consideration two auxiliary systems.

System S(T):

- Axioms: all sequents from S^T
- Inference rule: (CUT)

System $S(T)^-$:

- Axioms: all sequents from S^T
- Inference rule: (CUT) with premises without empty antecedents

Lemma 2

For any sequent $X \rightarrow A$:

$$S(T) \vdash X \to A$$
 iff $S(T)^- \vdash X \to A$.

Interpolation for S(T)

Lemat 3. Interpolation lemma for S(T)

If $S(T) \vdash X[Y] \rightarrow A$, then there exists $D \in T$ such that

$$S(T) \vdash Y \to D$$
 and $S(T) \vdash X[D] \to A$.

Interpolation for S(T)

Lemat 3. Interpolation lemma for S(T)

If $S(T) \vdash X[Y] \rightarrow A$, then there exists $D \in T$ such that

$$S(T) \vdash Y \to D$$
 and $S(T) \vdash X[D] \to A$.

Lemma 4

For any T-sequent $X \to A$:

$$NL1(\Gamma) \vdash X \rightarrow_T A$$
 iff $S(T) \vdash X \rightarrow A$.

Theorem 1

If Γ is finite, then $\mathrm{NL1}(\Gamma)$ is decidable in polynomial time.

Theorem 1

If Γ is finite, then $\mathrm{NL1}(\Gamma)$ is decidable in polynomial time.

Proof.

Let

Theorem 1

If Γ is finite, then $\mathrm{NL1}(\Gamma)$ is decidable in polynomial time.

Proof.

Let

 Γ - a finite set of sequents of the form $B \to C$

Theorem 1

If Γ is finite, then $\mathrm{NL1}(\Gamma)$ is decidable in polynomial time.

Proof.

Let

```
\Gamma - a finite set of sequents of the form B \to C X \to A - a sequent.
```

Theorem 1

If Γ is finite, then $\mathrm{NL1}(\Gamma)$ is decidable in polynomial time.

Proof.

Let

```
\Gamma - a finite set of sequents of the form B \to C X \to A - a sequent.
```

n - the number of logical constants and atoms in $X \to A$ and Γ .

Theorem 1

If Γ is finite, then $NL1(\Gamma)$ is decidable in polynomial time.

Proof.

Let

 Γ - a finite set of sequents of the form $B \to C$ $X \to A$ - a sequent. n - the number of logical constants and atoms in $X \to A$ and Γ .

• As T we choose the set of all subformulas of formulas appearing in $X \to A$, formulas appearing in Γ and $\mathbf{1} \in T$.

Theorem 1

If Γ is finite, then $NL1(\Gamma)$ is decidable in polynomial time.

Proof.

Let

```
\Gamma - a finite set of sequents of the form B \to C X \to A - a sequent. n - the number of logical constants and atoms in X \to A and \Gamma.
```

- As T we choose the set of all subformulas of formulas appearing in $X \to A$, formulas appearing in Γ and $\mathbf{1} \in T$.
- Hence, T has n elements and we can construct it in time $O(n^2)$.

• By lemma 1 and 4 we have:

$$\text{NL1}(\Gamma) \vdash X \to A \quad \text{iff} \quad X \to_{\mathcal{T}} A, \\ X \to_{\mathcal{T}} A \quad \text{iff} \quad S(\mathcal{T}) \vdash X \to A.$$

• By lemma 1 and 4 we have:

$$NL1(\Gamma) \vdash X \to A \quad \text{iff} \quad X \to_T A,$$

 $X \to_T A \quad \text{iff} \quad S(T) \vdash X \to A.$

 Proofs in S(T) are in fact derivation trees of a context-free grammar whose production rules are the reversed sequents from S^T.

- By lemma 1 and 4 we have: $NL1(\Gamma) \vdash X \rightarrow A$ iff $X \rightarrow_{\mathcal{T}} A$, $X \rightarrow_{\mathcal{T}} A$ iff $S(\mathcal{T}) \vdash X \rightarrow A$.
- Proofs in S(T) are in fact derivation trees of a context-free grammar whose production rules are the reversed sequents from S^T .
- Checking derivability in context-free grammars is P-TIME decidable. For example, by known CYK algorithm, it can be done in time not exceed $k \cdot n^3$, where k is the size of S^T .

- By lemma 1 and 4 we have: $NL1(\Gamma) \vdash X \rightarrow A$ iff $X \rightarrow_{\mathcal{T}} A$, $X \rightarrow_{\mathcal{T}} A$ iff $S(\mathcal{T}) \vdash X \rightarrow A$.
- Proofs in S(T) are in fact derivation trees of a context-free grammar whose production rules are the reversed sequents from S^T .
- Checking derivability in context-free grammars is P-TIME decidable. For example, by known CYK algorithm, it can be done in time not exceed $k \cdot n^3$, where k is the size of S^T .
- The size of S^T is at most $O(n^3)$ and S^T can be constructed in $O(n^{12})$.

- By lemma 1 and 4 we have: $NL1(\Gamma) \vdash X \rightarrow A$ iff $X \rightarrow_{\mathcal{T}} A$, $X \rightarrow_{\mathcal{T}} A$ iff $S(\mathcal{T}) \vdash X \rightarrow A$.
- Proofs in S(T) are in fact derivation trees of a context-free grammar whose production rules are the reversed sequents from S^T .
- Checking derivability in context-free grammars is P-TIME decidable. For example, by known CYK algorithm, it can be done in time not exceed $k \cdot n^3$, where k is the size of S^T .
- The size of S^T is at most $O(n^3)$ and S^T can be constructed in $O(n^{12})$.

Hence, the total time is $O(n^{12})$, i.e. $NL1(\Gamma)$ is P-TIME decidable.

Further results

Theorem 1 can also be proven for systems:

• $NL1P(\Gamma)$ - $NL1(\Gamma)$ with the permutation rule

Further results

Theorem 1 can also be proven for systems:

- $\mathrm{NL1P}(\Gamma)$ $\mathrm{NL1}(\Gamma)$ with the permutation rule
- ullet GLC(Γ) Generalized Lambek Calculus with assumptions enriched with the permutation rule and/or identity for some product symbols

Main bibliography

- BUSZKOWSKI, W., 'Lambek Calculus with Nonlogical Axioms', in: C. CASADIO, P. J. SCOTT and R. A. G. SEELY (eds.), Language and Grammar. Studies in Mathematical Linguistics and Natural Language, CSLI Publications, 77:93, 2005.
- ② DE GROOTE, P. and F. LAMARCHE, 'Clasical Non-Associative Lambek Calculus', *Studia Logica*, 355:388–71, 2002, (special issue: *The Lambek calculus in logic and linguistics*).
- **③** Lambek, J., 'The mathematics of sentence structure', *The American Mathematical Monthly* , 154:170−65, 1958.
- LAMBEK, J., 'On the calculus of syntactic types', in:
 R. JACOBSON(ed.), Structure of Language and Its
 Mathematical Aspects, Proc. Symp. Appl. Math., AMS,
 Providence, 166:178, 1961.

