Model completeness and semisimple groups (joint with Daniel Max Hoffmann, Chieu-Minh Tran, Jinhe Ye)

Piotr Kowalski

Instytut Matematyczny Uniwersytetu Wrocławskiego

Beijing Model Theory Conference Beijing, July 9, 2024

- We are interested in algebraic linear groups.
- They are subgroups of $GL_n(K)$ (K is a field) given by systems of polynomial equations in n^2 variables.
- For example: $SL_n(K)$, $T_n(K)$, $UT_n(K)$,
- $\bullet\,$ In all these examples, the defining polynomials are over $\mathbb Z.$
- Hence, $GL_n, SL_n, T_n, UT_n, ...$ are actually *functors* from the category of fields (or even commutative rings with 1) to the category of groups.
- Such functors (given by polynomials over Z) are called (affine) group schemes over Z.

Our problem (Daniel Max Hoffmann, P.K., Chieu-Minh Tran, Jinhe Ye)

- We say that a structure *M* is model complete, if Th(*M*) is model complete (no parameters).
- Let G be a group scheme over \mathbb{Z} , so G is a functor

```
G : Fields \longrightarrow Groups
```

given by polynomials over \mathbb{Z} in n^2 variables as above.

- Let K be a model complete field, e.g.:
 - $\mathbb{Q}_{p}, \mathbb{R}, \mathbb{C};$
 - curve excluding fields (Johnson-Ye);
 - perfect PAC *e*-free fields with *e*-free field of absolute numbers (Jarden-Wheeler);
 - the fraction field of Witt vectors over a model complete field of positive characteristic (pointed out by F. Jahnke).

Problem

When the group G(K) is model complete?

Fact

The group \mathbb{Q}_p^* is not model complete (p > 2).

Proof.

S

There is no primitive *p*-th root of unity in \mathbb{Q}_p (*p* > 2), so:

$$\mathbb{Q}_{p}^{*} \cong \left(\mathbb{Q}_{p}^{*}\right)^{p} < \mathbb{Q}_{p}^{*}.$$

However, we also have:

$$\left(\mathbb{Q}_p^*\right)^p
eq \mathbb{Q}_p^*,$$

ince $p^p \in \left(\mathbb{Q}_p^*\right)^p$ but $p \notin \left(\mathbb{Q}_p^*\right)^p$ $(v_p(p) = 1 \notin p\mathbb{Z}).$

/⊒ ► < ∃ ►

SL_2 and history of the problem

- Minh asked Lou one day: *Is the group* SL₂(R) *model complete?* It turned out to be unknown.
- Afterwards Daniel, Minh, and Vincent worked on the model completeness of $\mathrm{SL}_2(\mathbb{R})$.
- They used root systems and the KAN-decomposition.

Remark

The field \mathbb{R} is model complete and \mathbb{R} is bi-interpretable with the group $\mathrm{SL}_2(\mathbb{R})$ (Maltsev, Simon Thomas), but it does *not* formally imply that $\mathrm{SL}_2(\mathbb{R})$ is model complete because of:

- parameters,
- Ø possible quantifiers in the interpretations,
- any theory is bi-interpretable with its Morleyization which has QE, so...

Borel-Tits Theorem

- Daniel gave a talk about it at Sirince, Turkey (May 2023, 22nd and last *Antalya Algebra Days*).
- During this talk, I realized that the following classical theorem may be useful.

Theorem (Borel-Tits)

Let H, G be simple algebraic groups defined over fields L, M respectively. Assume that H is simply connected or G is adjoint. Let $\alpha : H(L) \rightarrow G(M)$ be a group homomorphism with Zariski dense image (in $G(M^{alg})$). Then there exist:

- a field homomorphism $\varphi : L \to M$ giving $\varphi_H : H(L) \to H(M)$,
- an isogeny $\beta : {}^{\varphi}H \to G$ giving $\beta_M : H(M) \to G(M)$

such that $\alpha = \beta_M \circ \varphi_H$.

It is quite an amazing rigidity statement. The terms in red will be explained on the next slide.

Definitions

- By a simple algebraic group over a field *K*, we mean an algebraic group *G* over *K* such that any proper normal subgroup of *G*(*K*^{alg}) is finite.
- By a semisimple algebraic group over a field K, we mean an algebraic group G over K such that any normal commutative subgroup of $G(K^{\text{alg}})$ is finite.
- An isogeny is an algebraic group epimorphism with a finite kernel.
- A semisimple algebraic group G is simply connected if for any isogeny $\alpha : \widetilde{G} \to G$, where \widetilde{G} is a connected algebraic group, the map $\alpha_{K^{\text{alg}}} : \widetilde{G}(K^{\text{alg}}) \to G(K^{\text{alg}})$ is one-to-one.
- A semisimple algebraic group G is adjoint if Z(G) is trivial.

Fact

If G is semisimple, then there is a semisimple simply connected algebraic group G_{sc} and an isogeny $G_{sc} \rightarrow G$ ("universal cover").

Examples/Remarks I

- Fix $n \ge 2$.
- SL_n is simple and simply connected.
- The quotient morphism of group schemes

$$\pi: \mathrm{SL}_n \to \mathrm{PGL}_n = \mathrm{SL}_n / Z(\mathrm{SL}_n)$$

is an isogeny (an epimorphism with finite kernel).

- PGL_n is simple and adjoint.
- If G is over \mathbb{C} then: G is simply connected iff $\pi_1(G(\mathbb{C})) = 0$.
- Note that

$$\pi_1(\mathrm{SL}_2(\mathbb{C})) = 0, \quad \pi_1(\mathrm{SL}_2(\mathbb{R})) = \mathbb{Z}.$$

Examples/Remarks II

- The situation gets complicated on the level of rational points. Let *K* be a field.
- The corresponding group homomorphism

$$\pi_K: \mathrm{SL}_n(K) \to \mathrm{PGL}_n(K)$$

is usually not onto. Its image is $PSL_n(K)$ and we have:

$$\operatorname{PGL}_n(K)/\operatorname{PSL}_n(K) \cong K^*/(K^*)^n.$$

- $\operatorname{PSL}_n(K)$ is the commutator group of $\operatorname{PGL}_n(K)$.
- The PSL_n functor is *not* an algebraic group, but it is a Chevalley group (functor).
- Usually, $SL_n(K)$, $PGL_n(K)$ are not simple groups, but $PSL_n(K)$ is simple.

- Let $G_{\mathbb{C}}$ be a connected complex semisimple group.
- Chevalley showed that there is a uniquely determined affine group scheme G over \mathbb{Z} such that:

 - For any algebraically closed field K, G(K) is a connected semisimple algebraic group "defined and split over the prime field of K". (In short: "best possible".)
- We call *G* the Chevalley-Demazure group scheme.
- We say that G is simple (simply connected, etc.) if the algebraic group $G(\mathbb{C})$ is so.
- They should *not* be confused with the Chevalley groups (as in the previous slide)!

・ 同 ト ・ ヨ ト ・ ヨ ト

Chevalley-Demazure simple group schemes

We will be interested in Chevalley-Demazure simple group schemes which are classified below.

Φ	$\Lambda(\Phi)$	$G_{ m sc}$	G_{ad}	in between
$A_{n-1}, n \ge 2$	Z_n	SL_n	PGL_n	$\mathrm{SL}_n/Z_d \ (d n)$
$B_n, \ n \ge 2$	Z_2	$\operatorname{Spin}_{2n+1}$	SO_{2n+1}	_
$C_n, n \ge 2$	Z_2	Sp_{2n}	PCSp_{2n}	_
$D_n, n \geq 3 \text{ odd}$	Z_4	Spin_{2n}	PCO_{2n}°	SO_{2n}
$D_n, n \ge 4$ even	$Z_2 \times Z_2$	$\operatorname{Spin}_{2n}^{2n}$	PCO_{2n}°	$\mathrm{SO}_{2n},\mathrm{HSpin}_{2n}$
G_2	1	G_2		_
F_4	1	F_4		_
E_6	Z_3	$(E_6)_{\rm sc}$	$(E_6)_{\mathrm{ad}}$	_
E_7	Z_2	$(E_7)_{\rm sc}$	$(E_7)_{\mathrm{ad}}$	_
E_8	1	E_8		_

Theorem (Segal-Tent, Simon Thomas)

Let G be a Chevalley-Demazure simple and simply connected group scheme and K be a field. Then we have the following.

- If N is a group and $N \equiv G(K)$, then there is a field M such that $N \cong G(M)$.
- **2** If M is a field such that $G(K) \equiv G(M)$, then $K \equiv M$.
 - This result (more generally, its bi-interpretability version) was shown by Segal-Tent in the case of G of rank at least 2 (so, excluding SL₂).
 - In his PhD thesis, Simon Thomas showed it for SL₂ as well (but he worked in the context of Chevalley groups...).

Consequence of Borel-Tits

There is a density assumption in Borel-Tits, which is of course necessary, since the existence of an isogeny $H \rightarrow G$ implies $\dim(H) = \dim(G)$.

However, we still have the following.

Corollary of Borel-Tits

Suppose that K, L are infinite, G is simple algebraic and $f : G(K) \rightarrow G(L)$ is a monomorphism. Then the image of f is Zariski dense.

Proof.

- We use Borel-Tits for f composed with the "universal cover" map ${\it G}_{\rm sc} \to {\it G}.$
- If the image of f is not Zariski dense, then there is an isogeny from G_{sc} to a quotient of a proper algebraic subgroup of G, which contradicts the dimension equality above.

Theorem

Let G be a simply connected simple Chevalley-Demazure group scheme (e.g. $G = SL_2$) and K be a model complete field. Then G(K) is model complete.

- For the proof, let H ≡ G(K) ≡ N and f : H → N be a monomorphism. We need to show that f is elementary.
- By Segal-Tent, there are fields L, M such that:

$$H \cong G(L), \quad N \cong G(M), \quad L \equiv K \equiv M.$$

Therefore, we can assume that $f : G(L) \rightarrow G(M)$.

• By Borel-Tits (and Corollary), there is a field homomorphism $\varphi: L \to M$ (necessarily elementary!) and an isogeny $\beta: G \to G$ such that $f = \beta_M \circ \varphi_G$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof for simple simply connected II

• Since G is simply connected, the map

$$eta_{\mathcal{M}^{\mathrm{alg}}}: \mathit{G}(\mathcal{M}^{\mathrm{alg}})
ightarrow \mathit{G}(\mathcal{M}^{\mathrm{alg}})$$

is one-to-one.

- Hence, there is an isogeny $\beta' : G \to {}^{\operatorname{Fr}^i}G$ such that $\beta' \circ \beta = {\operatorname{Fr}}^i_G$.
- Since *M* is model complete, *M* is perfect, so

$$(\operatorname{Fr}_{G}^{i})_{M}: G(M) \cong \operatorname{Fr}^{i} G(M).$$

- Hence, β_M is an isomorphism as well.
- Since $f = \beta_M \circ \varphi_G$, we can assume that $f = \varphi_G$ which is elementary, since $\varphi : L \to M$ is elementary.

Proof for products of simple simply connected I

Lemma 1 (Feferman-Vaught)

If $M_1 \preccurlyeq N_1, M_2 \preccurlyeq N_2$ then $M_1 \times M_2 \preccurlyeq N_1 \times N_2$.

Lemma 2 (Ziegler)

Suppose that $M \equiv M_1 \times M_2$ and M is special (kind of saturated, they exist). Then there are *L*-structures N_1, N_2 such that $M_1 \equiv N_1, \quad M_2 \equiv N_2, \quad M \cong N_1 \times N_2.$

- For proof of Lemma 2, take $T := Th(M_1 \times M_2)$ and a new language L', which is L expanded by two extra binary relations.
- Let T' be an L'-theory whose models are models of T which are products of models of the theories of M_1 and M_2 .
- By Casanovas' theorem (special models are expandable), M can be expanded to an L'-structure which is a model of T', so we obtain N_1 , N_2 as in the statement.

くロ と く 同 と く ヨ と 一

Proof for products of simple simply connected II

Theorem

Suppose that:

- The structures M_1, \ldots, M_n are model complete.
- 3 For any $M_1' \equiv M_1 \equiv M_1'', \dots, M_n' \equiv M_n \equiv M_n''$ and any

$$\Psi: M'_1 \times \ldots \times M'_n \hookrightarrow M''_1 \times \ldots \times M''_n$$

there is $\sigma \in \operatorname{Sym}(n)$ and $\Psi_i : M'_i \hookrightarrow M''_{\sigma(i)}$ such that

$$\Psi = \operatorname{coordinate} (\sigma^{-1}) \circ (\Psi_1 \times \ldots \times \Psi_n)$$

and for each *i*, we have $M'_i \equiv M''_{\sigma(i)}$. Then, $M_1 \times \ldots \times M_n$ is model complete.

Lemmas 1. and 2. give a proof, since model completeness can be checked on special models.

Proof for products of simple simply connected III

Theorem

The assumptions of the previous theorem hold in the following cases.

- $M_i := G_i(K_i)$, where all G_i 's are simple and simply connected.
- **2** $M_i := G_i(K_i)$, where all G_i 's are simple and adjoint.
- $M_i := G_i(K_i)'$, where all G_i 's are simple and adjoint.

Corollary

If G_1, \ldots, G_n are simple and simply connected Chevalley-Demazure group schemes and K is model complete, then $G_1(K) \times \ldots \times G_n(K)$ is model complete.

Example (thanks to Martin Hils!)

 $\mathbb{Z}/2\mathbb{Z}$ and $C_{2^{\infty}}$ are model complete, but $\mathbb{Z}/2\mathbb{Z} \times C_{2^{\infty}}$ is not.

イロト イボト イヨト イヨト

Quotients

- Let G be a semisimple algebraic group.
- As stated before, there exists a semisimple simply connected algebraic group $G_{\rm sc}$ and an isogeny $G_{\rm sc} \rightarrow G$.
- Similarly, $G/Z(G) =: G_{ad}$ is adjoint and the quotient morphism is an isogeny.
- We would like to show that G(K) is model complete for a model complete K.
- There are two problems:
 - How model completeness behaves with respect to finite quotients/extensions (finite extensions of model complete groups need not be model complete!).
 - On the level of rational points, they are not really quotients!

・ 同 ト ・ ヨ ト ・ ヨ ト

- Let G be a semisimple Chevalley-Demazure group scheme.
- Then G is a finite central quotient of a finite product of simple and simply connected Chevalley-Demazure group schemes.

Theorem

If K is a model complete field, then G(K)' (the commutator group) is model complete.

- As mentioned above, G(K)' is the corresponding Chevalley group.
- A sketch of the proof is on the next three slides.

Proof for Chevalley I: set-up and coding

 \bullet We have the "universal cover" isogeny $\pi:{\it G}_{\rm sc}\to{\it G}$ and

$$G(K)' = \operatorname{im}(\pi_K : G_{\operatorname{sc}}(K) \to G(K)).$$

Let $N(K) := \ker(\pi_K)$ (finite and central).

- We also have $G_{sc} \cong S_1 \times \ldots \times S_n$, where S_1, \ldots, S_n are simple and simply connected. Assume for simplicity that n = 2.
- We code the above in a first-order way using a bigger language L'_c : the language of groups together with a function symbol $c : G(K)' \times G(K)' \rightarrow N(K)$ and two binary relation symbols.
- The theory T'_c says that c is a 2-cocycle, the group given by c is isomorphic to $H_1 \times H_2$, and

$$H_1 \equiv S_1(K), \quad H_2 \equiv S_2(K).$$

Proof for Chevalley II: expanding

- Take $G_1 \equiv G(K)' \equiv G_2$ and a monomorphism $f: G_1 \rightarrow G_2$.
- We can assume that G_1, G_2 are special, so, by Casanovas again, they expand to models of T'_c .
- By Segal-Tent, we have that:

$$G_1 \cong (S_1(L_1) \times S_2(L_2)) / N(K), \ G_2 \cong (S_1(M_1) \times S_2(M_2)) / N(K)$$

and $L_1 \equiv L_2 \equiv K \equiv M_1 \equiv M_2$. Assume for simplicity that $L_1 = L_2 = M = M_1 = M_2$, so $G_1 = G(M)' = G_2$.

• It can be shown that f maps center onto center, so it induces a monomorphism:

$$f_{\mathrm{ad}}: G_{\mathrm{ad}}(M)' = (S_1)_{\mathrm{ad}}(M)' \times (S_2)_{\mathrm{ad}}(M)' o G_{\mathrm{ad}}(M)'.$$

• Such monomorphisms are understood (a theorem few slides ago), so we can assume that $f_{\rm ad} = f_1 \times f_2$.

ヘロト ヘ河ト ヘヨト ヘヨト

Proof for Chevalley III: lifting and conclusion

Each $f_i : (S_i)_{ad}(M)' \to (S_i)_{ad}(M)'$ has a description as in Borel-Tits, hence f_i and f_{ad} lift to

 $\widetilde{f}_i: S_i(M) \to S_i(M), \quad f_{sc}:=\widetilde{f}_1 \times \widetilde{f}_2: G_{sc}(M) \to G_{sc}(M).$

By the result about products, f_{sc} is elementary. We have:

The upper square *need not* commute, but after little corrections, $f_{\rm sc}$ factors to $f': G(M)' \to G(M)'$ which is elementary. We can show that im(f) = im(f'), so f is elementary as well.

General semisimple case (in progress)

- We take G and K as before and consider G(K) (instead of G(K)').
- We take one more language L["]_c, which is L[']_c expanded by the constant symbols living in S_i(K) needed for the Segal-Tent bi-interpretations between each S_i(K) and K (i = 1, 2).
- There is an L_c'' -theory T_c'' saying that

$$G(K) = \bigcup_{L/K} G(K) \cap G(L)',$$

where L/K is a Kummer extension such that

$$[L:K] \leq 6 \cdot \operatorname{rank}(G),$$

so these extensions form a definable family!

• The previous proof needs to be adjusted to take into account these definable families. Work in progress...

- The case of $G = UT_3$ (Heisenberg) is also done. Maybe the arguments work for a large class/any unipotent group.
- There are some very conjectural algebraic criteria on a group scheme G over Z which should be equivalent to:
 "for each model complete field K, the group G(K) is model complete".
- We conjecture that if G is any group definable in an algebraically closed field K, then G is model complete.