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Linear algebraic groups and group schemes over Z

We are interested in algebraic linear groups.

They are subgroups of GLn(K ) (K is a field) given by systems
of polynomial equations in n2 variables.

For example: SLn(K ),Tn(K ),UTn(K ), . . ..

In all these examples, the defining polynomials are over Z.

Hence, GLn,SLn,Tn,UTn, . . . are actually functors from the
category of fields (or even commutative rings with 1) to the
category of groups.

Such functors (given by polynomials over Z) are called
(affine) group schemes over Z.
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Our problem
(Daniel Max Hoffmann, P.K., Chieu-Minh Tran, Jinhe Ye)

We say that a structure M is model complete, if Th(M) is
model complete (no parameters).

Let G be a group scheme over Z, so G is a functor

G : Fields −→ Groups

given by polynomials over Z in n2 variables as above.
Let K be a model complete field, e.g.:

Qp,R,C;
curve excluding fields (Johnson-Ye);
perfect PAC e-free fields with e-free field of absolute numbers
(Jarden-Wheeler);
the fraction field of Witt vectors over a model complete field
of positive characteristic (pointed out by F. Jahnke).

Problem

When the group G (K ) is model complete?
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Multiplicative group is bad

Fact

The group Q∗p is not model complete (p > 2).

Proof.

There is no primitive p-th root of unity in Qp (p > 2), so:

Q∗p
∼=
(
Q∗p
)p
< Q∗p.

However, we also have: (
Q∗p
)p ⊀ Q∗p,

since pp ∈
(
Q∗p
)p

but p /∈
(
Q∗p
)p

(vp(p) = 1 /∈ pZ).
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SL2 and history of the problem

Minh asked Lou one day:
Is the group SL2(R) model complete?
It turned out to be unknown.

Afterwards Daniel, Minh, and Vincent worked on the model
completeness of SL2(R).

They used root systems and the KAN-decomposition.

Remark

The field R is model complete and R is bi-interpretable with the
group SL2(R) (Maltsev, Simon Thomas),
but it does not formally imply that SL2(R) is model complete
because of:

1 parameters,

2 possible quantifiers in the interpretations,

3 any theory is bi-interpretable with its Morleyization which has
QE, so...
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Borel-Tits Theorem

Daniel gave a talk about it at Sirince, Turkey (May 2023,
22nd and last Antalya Algebra Days).

During this talk, I realized that the following classical theorem
may be useful.

Theorem (Borel-Tits)

Let H,G be simple algebraic groups defined over fields L,M
respectively. Assume that H is simply connected or G is adjoint.
Let α : H(L)→ G (M) be a group homomorphism with Zariski
dense image (in G (Malg)). Then there exist:

a field homomorphism ϕ : L→ M giving ϕH : H(L)→ H(M),

an isogeny β : ϕH → G giving βM : H(M)→ G (M)

such that α = βM ◦ ϕH .

It is quite an amazing rigidity statement. The terms in red will be
explained on the next slide.
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Definitions

By a simple algebraic group over a field K , we mean an
algebraic group G over K such that any proper normal
subgroup of G (K alg) is finite.

By a semisimple algebraic group over a field K , we mean an
algebraic group G over K such that any normal commutative
subgroup of G (K alg) is finite.

An isogeny is an algebraic group epimorphism with a finite
kernel.

A semisimple algebraic group G is simply connected if for any
isogeny α : G̃ → G , where G̃ is a connected algebraic group,
the map αK alg : G̃ (K alg)→ G (K alg) is one-to-one.

A semisimple algebraic group G is adjoint if Z (G ) is trivial.

Fact

If G is semisimple, then there is a semisimple simply connected
algebraic group Gsc and an isogeny Gsc → G (“universal cover”).
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Examples/Remarks I

Fix n > 2.

SLn is simple and simply connected.

The quotient morphism of group schemes

π : SLn → PGLn = SLn/Z (SLn)

is an isogeny (an epimorphism with finite kernel).

PGLn is simple and adjoint.

If G is over C then:
G is simply connected iff π1(G (C)) = 0.

Note that

π1(SL2(C)) = 0, π1(SL2(R)) = Z.
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Examples/Remarks II

The situation gets complicated on the level of rational points.
Let K be a field.

The corresponding group homomorphism

πK : SLn(K )→ PGLn(K )

is usually not onto. Its image is PSLn(K ) and we have:

PGLn(K )/PSLn(K ) ∼= K ∗/(K ∗)n.

PSLn(K ) is the commutator group of PGLn(K ).

The PSLn functor is not an algebraic group, but it is a
Chevalley group (functor).

Usually, SLn(K ),PGLn(K ) are not simple groups, but
PSLn(K ) is simple.
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Chevalley-Demazure group schemes

Let GC be a connected complex semisimple group.

Chevalley showed that there is a uniquely determined affine
group scheme G over Z such that:

1 G (C) ∼= GC,
2 For any algebraically closed field K , G (K ) is a connected

semisimple algebraic group “defined and split over the prime
field of K”. (In short: “best possible”.)

We call G the Chevalley-Demazure group scheme.

We say that G is simple (simply connected, etc.) if the
algebraic group G (C) is so.

They should not be confused with the Chevalley groups (as in
the previous slide)!
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Chevalley-Demazure simple group schemes

We will be interested in Chevalley-Demazure simple group schemes
which are classified below.
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Segal-Tent and Simon Thomas

Theorem (Segal-Tent, Simon Thomas)

Let G be a Chevalley-Demazure simple and simply connected
group scheme and K be a field. Then we have the following.

1 If N is a group and N ≡ G (K ), then there is a field M such
that N ∼= G (M).

2 If M is a field such that G (K ) ≡ G (M), then K ≡ M.

This result (more generally, its bi-interpretability version) was
shown by Segal-Tent in the case of G of rank at least 2 (so,
excluding SL2).

In his PhD thesis, Simon Thomas showed it for SL2 as well
(but he worked in the context of Chevalley groups...).
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Consequence of Borel-Tits

There is a density assumption in Borel-Tits, which is of course
necessary, since the existence of an isogeny H → G implies
dim(H) = dim(G ).
However, we still have the following.

Corollary of Borel-Tits

Suppose that K , L are infinite, G is simple algebraic and
f : G (K )→ G (L) is a monomorphism. Then the image of f is
Zariski dense.

Proof.

We use Borel-Tits for f composed with the “universal cover”
map Gsc → G .

If the image of f is not Zariski dense, then there is an isogeny
from Gsc to a quotient of a proper algebraic subgroup of G ,
which contradicts the dimension equality above.
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Proof for simple simply connected I

Theorem

Let G be a simply connected simple Chevalley-Demazure group
scheme (e.g. G = SL2) and K be a model complete field. Then
G (K ) is model complete.

For the proof, let H ≡ G (K ) ≡ N and f : H → N be a
monomorphism. We need to show that f is elementary.

By Segal-Tent, there are fields L,M such that:

H ∼= G (L), N ∼= G (M), L ≡ K ≡ M.

Therefore, we can assume that f : G (L)→ G (M).

By Borel-Tits (and Corollary), there is a field homomorphism
ϕ : L→ M (necessarily elementary!) and an isogeny
β : G → G such that f = βM ◦ ϕG .
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Proof for simple simply connected II

Since G is simply connected, the map

βMalg : G (Malg)→ G (Malg)

is one-to-one.

Hence, there is an isogeny β′ : G → FriG such that
β′ ◦ β = FriG .

Since M is model complete, M is perfect, so(
FriG

)
M

: G (M) ∼= FriG (M).

Hence, βM is an isomorphism as well.

Since f = βM ◦ ϕG , we can assume that f = ϕG which is
elementary, since ϕ : L→ M is elementary.
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Proof for products of simple simply connected I

Lemma 1 (Feferman-Vaught)

If M1 4 N1,M2 4 N2 then M1 ×M2 4 N1 × N2.

Lemma 2 (Ziegler)

Suppose that M ≡ M1 ×M2 and M is special (kind of saturated,
they exist). Then there are L-structures N1,N2 such that

M1 ≡ N1, M2 ≡ N2, M ∼= N1 × N2.

For proof of Lemma 2, take T := Th(M1 ×M2) and a new
language L′, which is L expanded by two extra binary relations.

Let T ′ be an L′-theory whose models are models of T which
are products of models of the theories of M1 and M2.

By Casanovas’ theorem (special models are expandable), M
can be expanded to an L′-structure which is a model of T ′, so
we obtain N1,N2 as in the statement.
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Proof for products of simple simply connected II

Theorem

Suppose that:

1 The structures M1, . . . ,Mn are model complete.

2 For any M ′1 ≡ M1 ≡ M ′′1 , . . . ,M
′
n ≡ Mn ≡ M ′′n and any

Ψ : M ′1 × . . .×M ′n ↪→ M ′′1 × . . .×M ′′n ,

there is σ ∈ Sym(n) and Ψi : M ′i ↪→ M ′′σ(i) such that

Ψ = coordinate
(
σ−1

)
◦ (Ψ1 × . . .×Ψn)

and for each i , we have M ′i ≡ M ′′σ(i).

Then, M1 × . . .×Mn is model complete.

Lemmas 1. and 2. give a proof, since model completeness can be
checked on special models.
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Proof for products of simple simply connected III

Theorem

The assumptions of the previous theorem hold in the following
cases.

1 Mi := Gi (Ki ), where all Gi ’s are simple and simply connected.

2 Mi := Gi (Ki ), where all Gi ’s are simple and adjoint.

3 Mi := Gi (Ki )
′, where all Gi ’s are simple and adjoint.

Corollary

If G1, . . . ,Gn are simple and simply connected Chevalley-Demazure
group schemes and K is model complete, then
G1(K )× . . .× Gn(K ) is model complete.

Example (thanks to Martin Hils!)

Z/2Z and C2∞ are model complete, but Z/2Z× C2∞ is not.
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Quotients

Let G be a semisimple algebraic group.

As stated before, there exists a semisimple simply connected
algebraic group Gsc and an isogeny Gsc → G .

Similarly, G/Z (G ) =: Gad is adjoint and the quotient
morphism is an isogeny.

We would like to show that G (K ) is model complete for a
model complete K .

There are two problems:
1 How model completeness behaves with respect to finite

quotients/extensions (finite extensions of model complete
groups need not be model complete!).

2 On the level of rational points, they are not really quotients!
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Model completeness of Chevalley groups

Let G be a semisimple Chevalley-Demazure group scheme.

Then G is a finite central quotient of a finite product of simple
and simply connected Chevalley-Demazure group schemes.

Theorem

If K is a model complete field, then G (K )′ (the commutator
group) is model complete.

As mentioned above, G (K )′ is the corresponding Chevalley
group.

A sketch of the proof is on the next three slides.
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Proof for Chevalley I: set-up and coding

We have the “universal cover” isogeny π : Gsc → G and

G (K )′ = im(πK : Gsc(K )→ G (K )).

Let N(K ) := ker(πK ) (finite and central).

We also have Gsc
∼= S1 × . . .× Sn, where S1, . . . ,Sn are simple

and simply connected. Assume for simplicity that n = 2.

We code the above in a first-order way using a bigger language
L′c : the language of groups together with a function symbol
c : G (K )′ × G (K )′ → N(K ) and two binary relation symbols.

The theory T ′c says that c is a 2-cocycle, the group given by c
is isomorphic to H1 × H2, and

H1 ≡ S1(K ), H2 ≡ S2(K ).
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Proof for Chevalley II: expanding

Take G1 ≡ G (K )′ ≡ G2 and a monomorphism f : G1 → G2.

We can assume that G1,G2 are special, so, by Casanovas
again, they expand to models of T ′c .

By Segal-Tent, we have that:

G1
∼= (S1(L1)× S2(L2)) /N(K ), G2

∼= (S1(M1)× S2(M2)) /N(K )

and L1 ≡ L2 ≡ K ≡ M1 ≡ M2. Assume for simplicity that
L1 = L2 = M = M1 = M2, so G1 = G (M)′ = G2.

It can be shown that f maps center onto center, so it induces
a monomorphism:

fad : Gad(M)′ = (S1)ad(M)′ × (S2)ad(M)′ → Gad(M)′.

Such monomorphisms are understood (a theorem few slides
ago), so we can assume that fad = f1 × f2.
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Proof for Chevalley III: lifting and conclusion

Each fi : (Si )ad(M)′ → (Si )ad(M)′ has a description as in
Borel-Tits, hence fi and fad lift to

f̃i : Si (M)→ Si (M), fsc := f̃1 × f̃2 : Gsc(M)→ Gsc(M).

By the result about products, fsc is elementary.
We have:

Gsc(M)
fsc //

��

Gsc(M)

��
G (M)′

f //

��

G (M)′

��
Gad(M)′

fad // Gad(M)′

The upper square need not commute, but after little corrections,
fsc factors to f ′ : G (M)′ → G (M)′ which is elementary.
We can show that im(f ) = im(f ′), so f is elementary as well.

Kowalski Model completeness and semisimple groups



General semisimple case (in progress)

We take G and K as before and consider G (K ) (instead of
G (K )′).

We take one more language L′′c , which is L′c expanded by the
constant symbols living in Si (K ) needed for the Segal-Tent
bi-interpretations between each Si (K ) and K (i = 1, 2).

There is an L′′c -theory T ′′c saying that

G (K ) =
⋃
L/K

G (K ) ∩ G (L)′,

where L/K is a Kummer extension such that

[L : K ] 6 6 · rank(G ),

so these extensions form a definable family!

The previous proof needs to be adjusted to take into account
these definable families. Work in progress...
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Further directions

The case of G = UT3 (Heisenberg) is also done. Maybe the
arguments work for a large class/any unipotent group.

There are some very conjectural algebraic criteria on a group
scheme G over Z which should be equivalent to:
“for each model complete field K , the group G (K ) is model
complete”.

We conjecture that if G is any group definable in an
algebraically closed field K , then G is model complete.
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