Model theory and differential equations

Piotr Kowalski

Instytut Matematyczny Uniwersytetu Wrocławskiego

Baby Steps Beyond the Horizon Będlewo, September 2, 2024

Plan of the talk

Introduction to general concepts of model theory.

2 Differentially closed fields and strong minimality.

Sexamples: Painlevé and Schwarz differential equations.

What is model theory

- Model theory is a branch of logic. It was initiated by Tarski in 1930s.
- Model theory reached its current form mostly thanks to groundbreaking ideas and results of Saharon Shelah (mainly in 1970s) and Ehud Hrushovski (from 1980s till present).
- Currently model theory has connections with and applications to: diophantine geometry, algebraic geometry, algebraic dynamics, differential equations, combinatorics, ...

What is model theory about

- Analyzing definable properties of structures, where the terms "definable" and "structure" have a precise meaning coming from the first-order logic.
- The "first-order" assumption above may be relaxed sometimes but we will not get into that.
- In general, we have some fixed language *L* and then: *L*-formulas, *L*-sentences, *L*-theories, *L*-structures, and models of *L*-theories.
- I will just give some examples (next slide).

Model theory of fields

- Language: $L_r = \{+, \cdot, -, 0, 1\}$ (the language of rings).
- *L_r*-formulas, for example:

•
$$\exists y \ x + x = y \cdot y$$

•
$$\forall x \exists y \ x = y \cdot y$$

- L_r -sentences are L_r -formulas where all variables are quantified. For example: $\exists x \ x \cdot x = -1$
- *L_r*-theories: sets consisting of *L_r*-sentences. Examples: the theory of commutative rings with 1, the theory of fields, the theory of algebraically closed fields.
- L_r -structures: sets M together with two specified functions $+^M, \cdot^M : M \times M \to M$, one specified function $-^M : M \to M$, and two specified elements $0^M, 1^M$.
- Models of L_r -theories. For example: the models of the theory of fields are exactly those L_r -structures which are fields.

Existentially closed models

Definition

Let M be a model of T. We say that M is an existentially closed model of T, if for any quantifier free L_M -formula $\chi(x)$ (x is a tuple of variables) and any extension $M \subseteq N$ of models of T, we have:

" $\exists x \chi(x)$ is true in N" implies " $\exists x \chi(x)$ is true in M".

Intuitively, all solvable in an extension of M "systems of (in)equations" (parameters from M) can be already solved in M.

Example (Hilbert's Nullstellensatz)

The class of existentially closed fields (that is: existentially closed models of the theory of fields) coincides with the class of algebraically closed fields.

Inductive theories and model companion

Definition

A theory T is inductive, if for each chain of models of T, its union is also a model of T.

Theorem

Assume that T is inductive and M is a model of T. Then, there is an extension $M \subseteq N$ of models of T such that N is an existentially closed model of T.

The proof is similar to the construction of an algebraic closure of a field: add solutions "one by one" and take the unions of chains.

Definition

For an inductive *L*-theory T, we call an *L*-theory T^* a model companion of T if the class of models of T^* coincides with the class of existentially closed models of T.

Model companions and non-companionable theories

- The theory of pure sets (empty language) has a model companion, which is the theory of infinite sets.
- The theory of linear orders has a model companion, which is the theory of dense linear orders without endpoints.
- The theory of fields has a model companion, which is the theory of algebraically closed fields.
- The theory of fields with an automorphism has a model companion, which is called ACFA.
- The theory of commutative groups has a model companion: the theory of commutative divisible groups having infinitely many elements of order p for every prime p.
- The theory of groups has no model companion.
- The theory of commutative rings has no model companion.

Model theory of differential fields and DCF₀

- Language of differential rings: $L_{r,\partial} := L_r \cup \{\partial\}.$
- The following $L_{r,\partial}$ -sentence expresses the Leibniz rule:

$$\forall x \forall y \quad \partial(x \cdot y) = \partial(x) \cdot y + x \cdot \partial(y).$$

- DF₀ is the L_{r,∂}-theory of differential fields of characteristic 0, that is the theory of fields of characteristic 0 with an extra map ∂ which is additive and satisfies the Leibniz rule.
- DCF_0 is the model companion of DF_0 (A. Robinson).
- Blum gave the following axioms of DCF₀: if F has order greater than H, then there is x s.t. F(x) = 0 and H(x) ≠ 0.
- There are no natural examples of differentially closed fields. This is not unusual, e.g. there is only one algebraically closed field "in nature": C. The differential fields of meromorphic functions are "not so far" from being differentially closed.

Strongly minimal differential equations

We give a general model-theoretic concept in the special case of differential equations F(y) = 0 in one variable over $(\mathbb{C}(t), \frac{d}{dt})$.

Definition

We say that F(y) = 0 (as above) is strongly minimal, if for any differentially closed $(K, \partial) \supseteq (\mathbb{C}(t), \partial_t)$ the set $\{a \in K | F(a) = 0\}$ is infinite and for any differential equation H(y) = 0 over K: the set $\{a \in K | F(a) = 0 \land H(a) = 0\}$ is finite or the set $\{a \in K | F(a) = 0 \land H(a) \neq 0\}$ is finite.

- This notion makes sense for any language L (here: $L = L_{r,\partial}$), any L-theory (here: DCF₀) and any L-formula ("equation") in any number of variables (here: F(y) = 0).
- For the theory of algebraically closed fields, the strongly minimal formulas are those defining algebraic curves.

Strong minimal theories

There are the following three main strongly minimal theories (that is: the formula "x = x" is strongly minimal there).

- The theory of algebraically closed fields.
- ② The theory of infinite vector spaces over a fixed field F (the language (+, −, 0, ·_λ)_{λ∈F}).
- The theory of infinite pure sets (the empty language).

Zilber's trichotomy conjecture and DCF₀

- Zilber conjectured that any strongly minimal theory is "closely related" to one of the three from the previous slide (algebraically closed fields, vector spaces, pure sets).
- Hrushovski gave a counterexample to Zilber's conjecture.
- However, Zilber's trichotomy conjecture still holds inside many structures, like differentially closed fields. Therefore, a strongly minimal differential equation fits into one of the following three types (we write y' for ∂(y)):

"algebraically closed field like", for example y' = 0;
"vector space like" or modular, for example Picard-Painlevé VI: y'' = ¹/₂(¹/_y + ¹/_{y-1} + ¹/_{y-1})(y')² + (¹/_{t-y} + ¹/_{1-t} - ¹/_t)y' + ^{y(y-1)}/_{2t(t-1)(y-t)};
"pure set like" or geometrically trivial, examples later (those are the most interesting ones!).

Classical functions and irreducible equations

Let $D \subseteq \mathbb{C}$ be open and connected and $\mathcal{F}(D)$ be the differential field of meromorphic functions on D.

Definition (of classical functions, Umemura)

- Any $f \in \mathbb{C}(t)$ is classical.
- If f₁,..., f_n ∈ F(D) are classical and f ∈ F(D) is in the algebraic closure of the differential field generated by C(t)(f₁,..., f_n), then f is classical.
- If f' is classical or f'/f is classical, then f is classical. (Actually, more than that, but it is too technical.)

Definition (Painlevé)

An equation F(y) = 0 with coefficients from $\mathbb{C}(t)$ is irreducible (w.r.t. classical functions) if it has no classical solutions.

Strong minimality and irreducibility

The following result relates strong minimality and irreducibility.

Theorem (Nagloo-Pillay)

Let F(y) = 0 be a strongly minimal differential equation over $\mathbb{C}(t)$ which is modular or geometrically trivial. Then, for any $f \in \mathcal{F}(D) \setminus \mathbb{C}(t)^{\text{alg}}$ such that F(f) = 0, f is not classical.

Its consequence is the following.

Criterium (Nagloo-Pillay)

If F(y) = 0 is a strongly minimal differential equation over $\mathbb{C}(t)$ of order at least two and having no algebraic (over $\mathbb{C}(t)$) solutions, then F(y) = 0 is irreducible with respect to classical functions.

Examples on next slides.

Painlevé differential equations

The six families of Painlevé differential equations ($\alpha, \beta, \gamma, \delta \in \mathbb{C}$).

$$\begin{split} P_{I}: & y'' = 6y^{2} + t \\ P_{II}(\alpha): & y'' = 2y^{3} + ty + \alpha \\ P_{III}(\alpha, \beta, \gamma, \delta): & y'' = \frac{1}{y}(y')^{2} - \frac{1}{t}y' + \frac{1}{t}(\alpha y^{2} + \beta) + \gamma y^{3} + \frac{\delta}{y} \\ P_{IV}(\alpha, \beta): & y'' = \frac{1}{2y}(y')^{2} + \frac{3}{2}y^{3} + 4ty^{2} + 2(t^{2} - \alpha)y + \frac{\beta}{y} \\ P_{V}(\alpha, \beta, \gamma, \delta): & y'' = \left(\frac{1}{2y} + \frac{1}{y-1}\right)(y')^{2} - \frac{1}{t}y' + \frac{(y-1)^{2}}{t^{2}}\left(\alpha y + \frac{\beta}{y}\right) + \gamma \frac{y}{t} \\ & + \delta \frac{y(y+1)}{y-1} \\ P_{VI}(\alpha, \beta, \gamma, \delta): & y'' = \frac{1}{2}\left(\frac{1}{y} + \frac{1}{y+1} + \frac{1}{y-t}\right)(y')^{2} - \left(\frac{1}{t} + \frac{1}{t-1} + \frac{1}{y-t}\right)y' \\ & + \frac{y(y-1)(y-t)}{t^{2}(t-1)^{2}}\left(\alpha + \beta \frac{t}{y^{2}} + \gamma \frac{t-1}{(y-1)^{2}} + \delta \frac{t(t-1)}{(y-t)^{2}}\right) \end{split}$$

Irreducibility of Painlevé differential equations

Theorem (Nagloo-Pillay, strongly inspired by "Japanese school")

Let F(y) = 0 be one of the Painlevé differential equations from the previous slide such that the (possible) coefficients $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ are algebraically independent over \mathbb{Q} . Then, the differential equation F(y) = 0 is strongly minimal and geometrically trivial.

Corollary

Since it is known that there are no algebraic (over $\mathbb{C}(t)$) solutions to the differential equations as above, we get that these Painlevé differential equations are irreducible, so their solutions cannot be classical functions.

Schwarzian equations

• Let us define a Schwarzian equation $S_R(y) = 0$, where:

$$S_R(y) := \left(\frac{y''}{y'}\right)' - \frac{1}{2} \left(\frac{y''}{y'}\right)^2 + (y')^2 R(y)$$

for some $R \in \mathbb{C}(y)$.

If we take

$$R = R_j := \frac{y^2 - 1968y + 2654208}{y^2(y - 1728)^2},$$

then we get the differential equation of the classical *j*-function.

More generally, there are certain automorphic functions h giving an appropriate R_h ∈ ℂ(y) such that S_{R_h}(h) = 0.

Irreducibility of Schwarzian differential equations

Assertion of Painlevé (1895)

Differential equations $S_{R_h}(y) = 0$ (as in the previous slide) are irreducible.

The following result (*Annals of Mathematics*, 2020) implies Painlevé's claim from 1895.

Theorem (Casale, Freitag, Nagloo)

Those differential equations $S_{R_h}(y) = 0$ are strongly minimal and geometrically trivial.