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Painlevé and Schwarz

Model theory and differential equations

Piotr Kowalski

Instytut Matematyczny
Uniwersytetu Wroc lawskiego

Baby Steps Beyond the Horizon
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Plan of the talk

1 Introduction to general concepts of model theory.

2 Differentially closed fields and strong minimality.

3 Examples: Painlevé and Schwarz differential equations.
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What is model theory

Model theory is a branch of logic. It was initiated by Tarski in
1930s.

Model theory reached its current form mostly thanks to
groundbreaking ideas and results of Saharon Shelah (mainly in
1970s) and Ehud Hrushovski (from 1980s till present).

Currently model theory has connections with and applications
to: diophantine geometry, algebraic geometry, algebraic
dynamics, differential equations, combinatorics, ...

Kowalski Model theory and differential equations



Introduction
Differentially closed fields and strong minimality
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What is model theory about

Analyzing definable properties of structures, where the terms
“definable” and “structure” have a precise meaning coming
from the first-order logic.

The “first-order” assumption above may be relaxed sometimes
but we will not get into that.

In general, we have some fixed language L and then:
L-formulas, L-sentences, L-theories, L-structures, and models
of L-theories.

I will just give some examples (next slide).
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Model theory of fields

Language: Lr = {+, ·,−, 0, 1} (the language of rings).

Lr -formulas, for example:

∃y x + x = y · y
∀x ∃y x = y · y

Lr -sentences are Lr -formulas where all variables are quantified.
For example: ∃x x · x = −1

Lr -theories: sets consisting of Lr -sentences.
Examples: the theory of commutative rings with 1, the theory
of fields, the theory of algebraically closed fields.

Lr -structures: sets M together with two specified functions
+M , ·M : M ×M → M, one specified function −M : M → M,
and two specified elements 0M , 1M .

Models of Lr -theories. For example: the models of the theory
of fields are exactly those Lr -structures which are fields.
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Existentially closed models

Definition

Let M be a model of T . We say that M is an existentially closed
model of T , if for any quantifier free LM -formula χ(x) (x is a tuple
of variables) and any extension M ⊆ N of models of T , we have:

“∃xχ(x) is true in N” implies “∃x χ(x) is true in M”.

Intuitively, all solvable in an extension of M “systems of
(in)equations” (parameters from M) can be already solved in M.

Example (Hilbert’s Nullstellensatz)

The class of existentially closed fields (that is: existentially closed
models of the theory of fields) coincides with the class of
algebraically closed fields.
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Inductive theories and model companion

Definition

A theory T is inductive, if for each chain of models of T , its union
is also a model of T .

Theorem

Assume that T is inductive and M is a model of T . Then, there is
an extension M ⊆ N of models of T such that N is an existentially
closed model of T .

The proof is similar to the construction of an algebraic closure of a
field: add solutions “one by one” and take the unions of chains.

Definition

For an inductive L-theory T , we call an L-theory T ∗ a model
companion of T if the class of models of T ∗ coincides with the
class of existentially closed models of T .
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Model companions and non-companionable theories

1 The theory of pure sets (empty language) has a model
companion, which is the theory of infinite sets.

2 The theory of linear orders has a model companion, which is
the theory of dense linear orders without endpoints.

3 The theory of fields has a model companion, which is the
theory of algebraically closed fields.

4 The theory of fields with an automorphism has a model
companion, which is called ACFA.

5 The theory of commutative groups has a model companion:
the theory of commutative divisible groups having infinitely
many elements of order p for every prime p.

6 The theory of groups has no model companion.

7 The theory of commutative rings has no model companion.
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Model theory of differential fields and DCF0

Language of differential rings: Lr ,∂ := Lr ∪ {∂}.
The following Lr ,∂-sentence expresses the Leibniz rule:

∀x∀y ∂(x · y) = ∂(x) · y + x · ∂(y).

DF0 is the Lr ,∂-theory of differential fields of characteristic 0,
that is the theory of fields of characteristic 0 with an extra
map ∂ which is additive and satisfies the Leibniz rule.

DCF0 is the model companion of DF0 (A. Robinson).

Blum gave the following axioms of DCF0: if F has order
greater than H, then there is x s.t. F (x) = 0 and H(x) 6= 0.

There are no natural examples of differentially closed fields.
This is not unusual, e.g. there is only one algebraically closed
field “in nature”: C. The differential fields of meromorphic
functions are “not so far” from being differentially closed.
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Strongly minimal differential equations

We give a general model-theoretic concept in the special case of
differential equations F (y) = 0 in one variable over (C(t), d

dt ).

Definition

We say that F (y) = 0 (as above) is strongly minimal, if for any
differentially closed (K , ∂) ⊇ (C(t), ∂t) the set {a ∈ K |F (a) = 0}
is infinite and for any differential equation H(y) = 0 over K :
the set {a ∈ K |F (a) = 0 ∧ H(a) = 0} is finite or
the set {a ∈ K |F (a) = 0 ∧ H(a) 6= 0} is finite.

This notion makes sense for any language L (here: L = Lr ,∂),
any L-theory (here: DCF0) and any L-formula (“equation”) in
any number of variables (here: F (y) = 0).

For the theory of algebraically closed fields, the strongly
minimal formulas are those defining algebraic curves.
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Strong minimal theories

There are the following three main strongly minimal theories (that
is: the formula “x = x” is strongly minimal there).

1 The theory of algebraically closed fields.

2 The theory of infinite vector spaces over a fixed field F (the
language (+,−, 0, ·λ)λ∈F ).

3 The theory of infinite pure sets (the empty language).
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Zilber’s trichotomy conjecture and DCF0

Zilber conjectured that any strongly minimal theory is “closely
related” to one of the three from the previous slide
(algebraically closed fields, vector spaces, pure sets).

Hrushovski gave a counterexample to Zilber’s conjecture.

However, Zilber’s trichotomy conjecture still holds inside
many structures, like differentially closed fields. Therefore, a
strongly minimal differential equation fits into one of the
following three types (we write y ′ for ∂(y)):

1 “algebraically closed field like”, for example y ′ = 0;
2 “vector space like” or modular, for example Picard-Painlevé VI:

y ′′ = 1
2 ( 1

y + 1
y−1 + 1

y−t )(y ′)2 + ( 1
t−y + 1

1−t −
1
t )y ′+ y(y−1)

2t(t−1)(y−t) ;
3 “pure set like” or geometrically trivial, examples later (those

are the most interesting ones!).
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Classical functions and irreducible equations

Let D ⊆ C be open and connected and F(D) be the differential
field of meromorphic functions on D.

Definition (of classical functions, Umemura)

Any f ∈ C(t) is classical.

If f1, .., fn ∈ F(D) are classical and f ∈ F(D) is in the
algebraic closure of the differential field generated by
C(t)(f1, . . . , fn), then f is classical.

If f ′ is classical or f ′/f is classical, then f is classical.
(Actually, more than that, but it is too technical.)

Definition (Painlevé)

An equation F (y) = 0 with coefficients from C(t) is irreducible
(w.r.t. classical functions) if it has no classical solutions.
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Strong minimality and irreducibility

The following result relates strong minimality and irreducibility.

Theorem (Nagloo-Pillay)

Let F (y) = 0 be a strongly minimal differential equation over C(t)
which is modular or geometrically trivial. Then, for any
f ∈ F(D) \ C(t)alg such that F (f ) = 0, f is not classical.

Its consequence is the following.

Criterium (Nagloo-Pillay)

If F (y) = 0 is a strongly minimal differential equation over C(t) of
order at least two and having no algebraic (over C(t)) solutions,
then F (y) = 0 is irreducible with respect to classical functions.

Examples on next slides.
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Painlevé differential equations

The six families of Painlevé differential equations (α, β, γ, δ ∈ C).
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Irreducibility of Painlevé differential equations

Theorem (Nagloo-Pillay, strongly inspired by “Japanese school”)

Let F (y) = 0 be one of the Painlevé differential equations from the
previous slide such that the (possible) coefficients α, β, γ, δ ∈ C
are algebraically independent over Q. Then, the differential
equation F (y) = 0 is strongly minimal and geometrically trivial.

Corollary

Since it is known that there are no algebraic (over C(t)) solutions
to the differential equations as above, we get that these Painlevé
differential equations are irreducible, so their solutions cannot be
classical functions.
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Schwarzian equations

Let us define a Schwarzian equation SR(y) = 0, where:

SR(y) :=

(
y ′′

y ′

)′
− 1

2

(
y ′′

y ′

)2

+
(
y ′
)2

R(y)

for some R ∈ C(y).

If we take

R = Rj :=
y2 − 1968y + 2654208

y2(y − 1728)2
,

then we get the differential equation of the classical j-function.

More generally, there are certain automorphic functions h
giving an appropriate Rh ∈ C(y) such that SRh

(h) = 0.
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Irreducibility of Schwarzian differential equations

Assertion of Painlevé (1895)

Differential equations SRh
(y) = 0 (as in the previous slide) are

irreducible.

The following result (Annals of Mathematics, 2020) implies
Painlevé’s claim from 1895.

Theorem (Casale, Freitag, Nagloo)

Those differential equations SRh
(y) = 0 are strongly minimal and

geometrically trivial.
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