Model theory and differential equations

Piotr Kowalski

Instytut Matematyczny Uniwersytetu Wrocławskiego

Baby Steps Beyond the Horizon Będlewo, September 2, 2024

Plan of the talk

1 Introduction to general concepts of model theory.

² Differentially closed fields and strong minimality.

³ Examples: Painlevé and Schwarz differential equations.

What is model theory

- Model theory is a branch of logic. It was initiated by Tarski in 1930s.
- Model theory reached its current form mostly thanks to groundbreaking ideas and results of Saharon Shelah (mainly in 1970s) and Ehud Hrushovski (from 1980s till present).
- Currently model theory has connections with and applications to: diophantine geometry, algebraic geometry, algebraic dynamics, differential equations, combinatorics, ...

What is model theory about

- Analyzing definable properties of structures, where the terms "definable" and "structure" have a precise meaning coming from the first-order logic.
- The "first-order" assumption above may be relaxed sometimes but we will not get into that.
- \bullet In general, we have some fixed language L and then: L-formulas, L-sentences, L-theories, L-structures, and models of L-theories.
- I will just give some examples (next slide).

Model theory of fields

- Language: $L_r = \{+, \cdot, -, 0, 1\}$ (the language of rings).
- \bullet *L*_r-formulas, for example:

$$
\bullet \exists y \ x + x = y \cdot y
$$

$$
\bullet \ \forall x \ \exists y \ x = y \cdot y
$$

- \bullet L_r-sentences are L_r-formulas where all variables are quantified. For example: $\exists x \ x \cdot x = -1$
- L_r -theories: sets consisting of L_r -sentences. Examples: the theory of commutative rings with 1, the theory of fields, the theory of algebraically closed fields.
- \bullet L_r-structures: sets M together with two specified functions $+^{\mathcal{M}}, \cdot^{\mathcal{M}}: \mathcal{M} \times \mathcal{M} \rightarrow \mathcal{M},$ one specified function $-^{\mathcal{M}}: \mathcal{M} \rightarrow \mathcal{M},$ and two specified elements $0^{\mathcal{M}}, 1^{\mathcal{M}}.$
- Models of L_r -theories. For example: the models of the theory of fields are exactly those L_r -structures which are fields.

Existentially closed models

Definition

Let M be a model of T. We say that M is an existentially closed model of T, if for any quantifier free L_M -formula $\chi(x)$ (x is a tuple of variables) and any extension $M \subseteq N$ of models of T, we have:

" $\exists x \chi(x)$ is true in N" implies " $\exists x \chi(x)$ is true in M".

Intuitively, all solvable in an extension of M "systems of (in)equations" (parameters from M) can be already solved in M .

Example (Hilbert's Nullstellensatz)

The class of existentially closed fields (that is: existentially closed models of the theory of fields) coincides with the class of algebraically closed fields.

Inductive theories and model companion

Definition

A theory T is inductive, if for each chain of models of T , its union is also a model of T.

Theorem

Assume that T is inductive and M is a model of T . Then, there is an extension $M \subseteq N$ of models of T such that N is an existentially closed model of T.

The proof is similar to the construction of an algebraic closure of a field: add solutions "one by one" and take the unions of chains.

Definition

For an inductive L-theory T , we call an L-theory T^* a model companion of \overline{T} if the class of models of \overline{T}^* coincides with the class of existentially closed models of T.

Model companions and non-companionable theories

- **1** The theory of pure sets (empty language) has a model companion, which is the theory of infinite sets.
- **2** The theory of linear orders has a model companion, which is the theory of dense linear orders without endpoints.
- **3** The theory of fields has a model companion, which is the theory of algebraically closed fields.
- ⁴ The theory of fields with an automorphism has a model companion, which is called ACFA.
- **The theory of commutative groups has a model companion:** the theory of commutative divisible groups having infinitely many elements of order p for every prime p .
- **The theory of groups has no model companion.**
- **The theory of commutative rings has no model companion.**

Model theory of differential fields and DCF_0

- Language of differential rings: $L_{r,\partial} := L_r \cup \{\partial\}$.
- **•** The following $L_{r,\partial}$ -sentence expresses the Leibniz rule:

$$
\forall x \forall y \quad \partial(x \cdot y) = \partial(x) \cdot y + x \cdot \partial(y).
$$

- DF₀ is the $L_{r,\partial}$ -theory of differential fields of characteristic 0, that is the theory of fields of characteristic 0 with an extra map ∂ which is additive and satisfies the Leibniz rule.
- DCF₀ is the model companion of DF₀ (A. Robinson).
- Blum gave the following axioms of DCF_0 : if F has order greater than H, then there is x s.t. $F(x) = 0$ and $H(x) \neq 0$.
- There are no natural examples of differentially closed fields. This is not unusual, e.g. there is only one algebraically closed field "in nature": C. The differential fields of meromorphic functions are "not so far" from being differentially closed.

Strongly minimal differential equations

We give a general model-theoretic concept in the special case of differential equations $F(y)=0$ in one variable over $(\mathbb{C}(t),\frac{\mathrm{d}}{\mathrm{d}t})$ $\frac{\mathrm{d}}{\mathrm{d}t}$).

Definition

We say that $F(y) = 0$ (as above) is strongly minimal, if for any differentially closed $(K, \partial) \supseteq (C(t), \partial_t)$ the set $\{a \in K | F(a) = 0\}$ is infinite and for any differential equation $H(y) = 0$ over K: the set ${a \in K | F(a) = 0 \land H(a) = 0}$ is finite or the set ${a \in K | F(a) = 0 \land H(a) \neq 0}$ is finite.

- This notion makes sense for any language L (here: $L = L_{r,\partial}$), any L-theory (here: DCF_0) and any L-formula ("equation") in any number of variables (here: $F(y) = 0$).
- For the theory of algebraically closed fields, the strongly minimal formulas are those defining algebraic curves.

Strong minimal theories

There are the following three main strongly minimal theories (that is: the formula " $x = x$ " is strongly minimal there).

- **1** The theory of algebraically closed fields.
- **2** The theory of infinite vector spaces over a fixed field F (the language $(+, -, 0, \cdot_\lambda)_{\lambda \in F}$).
- **3** The theory of infinite pure sets (the empty language).

Zilber's trichotomy conjecture and DCF_0

- Zilber conjectured that any strongly minimal theory is "closely" related" to one of the three from the previous slide (algebraically closed fields, vector spaces, pure sets).
- Hrushovski gave a counterexample to Zilber's conjecture.
- However, Zilber's trichotomy conjecture still holds inside many structures, like differentially closed fields. Therefore, a strongly minimal differential equation fits into one of the following three types (we write y' for $\partial(y)$):

1 "algebraically closed field like", for example $y' = 0$;

- ² "vector space like" or *modular*, for example *Picard-Painlevé VI*: $y'' = \frac{1}{2}(\frac{1}{y} + \frac{1}{y-1} + \frac{1}{y-t})(y')^2 + (\frac{1}{t-y} + \frac{1}{1-t} - \frac{1}{t})y' + \frac{y(y-1)}{2t(t-1)(y-t)}$ $\frac{y(y-1)}{2t(t-1)(y-t)}$; **3** "pure set like" or geometrically trivial, examples later (those
	- are the most interesting ones!).

Classical functions and irreducible equations

Let $D \subseteq \mathbb{C}$ be open and connected and $\mathcal{F}(D)$ be the differential field of meromorphic functions on D.

Definition (of classical functions, Umemura)

- Any $f \in \mathbb{C}(t)$ is classical.
- **If** $f_1, ..., f_n \in \mathcal{F}(D)$ are classical and $f \in \mathcal{F}(D)$ is in the algebraic closure of the differential field generated by $\mathbb{C}(t)(f_1,\ldots,f_n)$, then f is classical.
- If f' is classical or f'/f is classical, then f is classical. (Actually, more than that, but it is too technical.)

Definition (Painlevé)

An equation $F(y) = 0$ with coefficients from $C(t)$ is irreducible (w.r.t. classical functions) if it has no classical solutions.

Strong minimality and irreducibility

The following result relates strong minimality and irreducibility.

Theorem (Nagloo-Pillay)

Let $F(y) = 0$ be a strongly minimal differential equation over $C(t)$ which is modular or geometrically trivial. Then, for any $f \in \mathcal{F}(D) \setminus \mathbb{C}(t)^{\text{alg}}$ such that $\mathsf{F}(f) = 0$, f is not classical.

Its consequence is the following.

Criterium (Nagloo-Pillay)

If $F(y) = 0$ is a strongly minimal differential equation over $C(t)$ of order at least two and having no algebraic (over $C(t)$) solutions, then $F(y) = 0$ is irreducible with respect to classical functions.

Examples on next slides.

Painlevé differential equations

The six families of Painlevé differential equations ($\alpha, \beta, \gamma, \delta \in \mathbb{C}$).

$$
P_I: y'' = 6y^2 + t
$$

\n
$$
P_{II}(\alpha): y'' = 2y^3 + ty + \alpha
$$

\n
$$
P_{III}(\alpha, \beta, \gamma, \delta): y'' = \frac{1}{y}(y')^2 - \frac{1}{t}y' + \frac{1}{t}(\alpha y^2 + \beta) + \gamma y^3 + \frac{\delta}{y}
$$

\n
$$
P_{IV}(\alpha, \beta): y'' = \frac{1}{2y}(y')^2 + \frac{3}{2}y^3 + 4ty^2 + 2(t^2 - \alpha)y + \frac{\beta}{y}
$$

\n
$$
P_V(\alpha, \beta, \gamma, \delta): y'' = \left(\frac{1}{2y} + \frac{1}{y-1}\right)(y')^2 - \frac{1}{t}y' + \frac{(y-1)^2}{t^2}\left(\alpha y + \frac{\beta}{y}\right) + \gamma \frac{y}{t}
$$

\n
$$
+ \delta \frac{y(y+1)}{y-1}
$$

\n
$$
P_{VI}(\alpha, \beta, \gamma, \delta): y'' = \frac{1}{2}\left(\frac{1}{y} + \frac{1}{y+1} + \frac{1}{y-t}\right)(y')^2 - \left(\frac{1}{t} + \frac{1}{t-1} + \frac{1}{y-t}\right)y' + \frac{y(y-1)(y-t)}{t^2(t-1)^2}\left(\alpha + \beta \frac{t}{y^2} + \gamma \frac{t-1}{(y-1)^2} + \delta \frac{t(t-1)}{(y-t)^2}\right)
$$

Irreducibility of Painlevé differential equations

Theorem (Nagloo-Pillay, strongly inspired by "Japanese school") Let $F(y) = 0$ be one of the Painlevé differential equations from the previous slide such that the (possible) coefficients $\alpha, \beta, \gamma, \delta \in \mathbb{C}$

are algebraically independent over Q. Then, the differential equation $F(y) = 0$ is strongly minimal and geometrically trivial.

Corollary

Since it is known that there are no algebraic (over $C(t)$) solutions to the differential equations as above, we get that these Painlevé differential equations are irreducible, so their solutions cannot be classical functions.

Schwarzian equations

• Let us define a Schwarzian equation $S_R(y) = 0$, where:

$$
S_R(y) := \left(\frac{y''}{y'}\right)' - \frac{1}{2}\left(\frac{y''}{y'}\right)^2 + \left(y'\right)^2 R(y)
$$

for some $R \in \mathbb{C}(\gamma)$.

o If we take

$$
R=R_j:=\frac{y^2-1968y+2654208}{y^2(y-1728)^2},
$$

then we get the differential equation of the classical j-function.

• More generally, there are certain automorphic functions h giving an appropriate $R_h \in \mathbb{C}(y)$ such that $\overline{S_{R_h}(h)} = 0$.

Irreducibility of Schwarzian differential equations

Assertion of Painlevé (1895)

Differential equations $\mathcal{S}_{R_h}(\mathcal{y})=0$ (as in the previous slide) are irreducible.

The following result (Annals of Mathematics, 2020) implies Painlevé's claim from 1895.

Theorem (Casale, Freitag, Nagloo)

Those differential equations $S_{R_h}(y) = 0$ are strongly minimal and geometrically trivial.