Gönenç Onay (joint with S.Durhan)

Mimar Sinan Güzel Sanatlar Üniversitesi

Model Theory In Wroclaw 2012

- Let (K, v) be a valued field, with k its residue field and O_v its valuation ring.
- If σ ∈ Aut(K) with σ(O_v) = O_v then σ induces automorphisms:

 σ_v on v(K) and $\overline{\sigma}$ on k; σ_v strickly increasing:

 $\gamma < \delta \Rightarrow \sigma(\gamma) < \sigma(\delta)$

• $(k, \bar{\sigma})$ is a difference field

In this case we say that (K, v, σ) is a valued difference field.

Remark

Any perfect valued field of equal characteristic (p > 0) is a valued difference field.

- Let (K, v) be a valued field, with k its residue field and O_v its valuation ring.
- If σ ∈ Aut(K) with σ(O_ν) = O_ν then σ induces automorphisms:

 σ_{v} on v(K) and $\overline{\sigma}$ on k; σ_{v} strickly increasing:

 $\gamma < \delta \Rightarrow \sigma(\gamma) < \sigma(\delta)$

• $(k, \bar{\sigma})$ is a difference field

In this case we say that (K, v, σ) is a valued difference field.

Remark

Any perfect valued field of equal characteristic (p > 0) is a valued difference field.

- Let (K, v) be a valued field, with k its residue field and O_v its valuation ring.
- If σ ∈ Aut(K) with σ(O_v) = O_v then σ induces automorphisms:

 σ_v on v(K) and $\overline{\sigma}$ on k; σ_v strickly increasing:

$$\gamma < \delta \Rightarrow \sigma(\gamma) < \sigma(\delta)$$

• $(k, \bar{\sigma})$ is a difference field

In this case we say that (K, v, σ) is a valued difference field.

Remark

Any perfect valued field of equal characteristic (p > 0) is a valued difference field.

- Let (K, v) be a valued field, with k its residue field and O_v its valuation ring.
- If σ ∈ Aut(K) with σ(O_v) = O_v then σ induces automorphisms:

 σ_v on v(K) and $\overline{\sigma}$ on k; σ_v strickly increasing:

$$\gamma < \delta \Rightarrow \sigma(\gamma) < \sigma(\delta)$$

• $(k, \bar{\sigma})$ is a difference field

In this case we say that (K, v, σ) is a valued difference field.

Remark

Any perfect valued field of equal characteristic (p > 0) is a valued difference field.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

 σ -polynomials: A finite sum of σ -monomials which are of the form

$$ax^{i_0}(\sigma(x))^{i_1}\ldots(\sigma^n(x))^{i_n},$$

where *a* is said to be the **coefficient** of *M* and the n + 1-tuple (i_0, i_1, \ldots, i_n) be the **index** of *M*, denoted by ind(M). We consider n + 1 tuples of integers under the partial ordering induced by \mathbb{N} .

linear σ -polynomials:

$$a_0x + a_1\sigma(x) + \cdots + a_n\sigma^n(x).$$

Remark

 σ -linear polynomials (:polynomial functions) has a (non-commutative) ring structure under addition and Ξ , Ξ , Σ , Σ composition. K is a module over this ring.

 σ -polynomials: A finite sum of σ -monomials which are of the form

$$ax^{i_0}(\sigma(x))^{i_1}\ldots(\sigma^n(x))^{i_n},$$

where *a* is said to be the **coefficient** of *M* and the n + 1-tuple (i_0, i_1, \ldots, i_n) be the **index** of *M*, denoted by ind(M). We consider n + 1 tuples of integers under the partial ordering induced by \mathbb{N} .

linear *σ*-polynomials:

$$a_0x + a_1\sigma(x) + \cdots + a_n\sigma^n(x).$$

Remark

 σ -linear polynomials (:polynomial functions) has a (non-commutative) ring structure under addition and and and and composition. K is a module over this ring.

 σ -polynomials: A finite sum of σ -monomials which are of the form

$$ax^{i_0}(\sigma(x))^{i_1}\dots(\sigma^n(x))^{i_n},$$

where *a* is said to be the **coefficient** of *M* and the n + 1-tuple (i_0, i_1, \ldots, i_n) be the **index** of *M*, denoted by ind(M). We consider n + 1 tuples of integers under the partial ordering induced by \mathbb{N} .

linear σ -polynomials:

$$a_0x + a_1\sigma(x) + \cdots + a_n\sigma^n(x).$$

Remark

 σ -linear polynomials (:polynomial functions) has a (non-commutative) ring structure under addition and Ξ , Ξ and Σ composition. K is a module over this ring.

 σ -polynomials: A finite sum of σ -monomials which are of the form

$$ax^{i_0}(\sigma(x))^{i_1}\dots(\sigma^n(x))^{i_n},$$

where *a* is said to be the **coefficient** of *M* and the n + 1-tuple (i_0, i_1, \ldots, i_n) be the **index** of *M*, denoted by ind(M). We consider n + 1 tuples of integers under the partial ordering induced by \mathbb{N} .

linear σ -polynomials:

$$a_0x + a_1\sigma(x) + \cdots + a_n\sigma^n(x).$$

Remark

 σ -linear polynomials (:polynomial functions) has a (non-commutative) ring structure under addition and ε so ε composition. K is a module over this ring.

$\mathbb{Z}[\sigma_v]$ -module v(K)

For γ ∈ v(K), x ∈ K with v(x) = γ and a σ monomial M, we set

$$\gamma \cdot \boldsymbol{M} := \boldsymbol{v}(\boldsymbol{a}_{j}\boldsymbol{x}^{i_{0}}(\sigma(\boldsymbol{x}))^{i_{1}}\dots(\sigma^{n}(\boldsymbol{x}))^{i_{n}}) = \boldsymbol{v}(\boldsymbol{a}_{j}) + \sum_{j=0}^{n} i_{j}\sigma_{\boldsymbol{v}}^{j}(\gamma),$$

The action of the { $\cdot M \mid M$ a σ -monomial with coefficient 1} induces a $\mathbb{Z}[\sigma_v]$ -module structure on $v(K^{\times})$.

$\mathbb{Z}[\sigma_v]$ -module v(K)

For γ ∈ v(K), x ∈ K with v(x) = γ and a σ monomial M, we set

$$\gamma \cdot \boldsymbol{M} := \boldsymbol{v}(\boldsymbol{a}_{j} \boldsymbol{x}^{i_{0}}(\sigma(\boldsymbol{x}))^{i_{1}} \dots (\sigma^{n}(\boldsymbol{x}))^{i_{n}}) = \boldsymbol{v}(\boldsymbol{a}_{j}) + \sum_{j=0}^{n} i_{j} \sigma_{\boldsymbol{v}}^{j}(\gamma),$$

The action of the { $\cdot M \mid M$ a σ -monomial with coefficient 1} induces a $\mathbb{Z}[\sigma_v]$ -module structure on $v(K^{\times})$.

We want to have that: Given two valued difference fields (K, v, σ) and (K', v', σ') such that

- $(k, \bar{\sigma}) \equiv (k', \bar{\sigma'})$ as difference fields and
- $v(K^{\times}) \equiv v(K'^{\times})$ as $\mathbb{Z}[\sigma]$ -modules

then $(K, v, \sigma) \equiv (K', v', \sigma')$ as valued difference fields.

Main results

Ax-Kochen and Ershov Principles

We want to have that: Given two valued difference fields (K, v, σ) and (K', v', σ') such that

- $(k, \bar{\sigma}) \equiv (k', \bar{\sigma'})$ as difference fields and
- ► $v(K^{\times}) \equiv v(K'^{\times})$ as $\mathbb{Z}[\sigma]$ -modules

then $(K, v, \sigma) \equiv (K', v', \sigma')$ as valued difference fields.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ → 目 → のへの

Ax-Kochen and Ershov Principles

We want to have that: Given two valued difference fields (K, v, σ) and (K', v', σ') such that

- $(k, \bar{\sigma}) \equiv (k', \bar{\sigma'})$ as difference fields and
- $v(K^{\times}) \equiv v(K'^{\times})$ as $\mathbb{Z}[\sigma]$ -modules

then $(K, v, \sigma) \equiv (K', v', \sigma')$ as valued difference fields.

Ax-Kochen and Ershov Principles

We want to have that: Given two valued difference fields (K, v, σ) and (K', v', σ') such that

- $(k, \bar{\sigma}) \equiv (k', \bar{\sigma'})$ as difference fields and
- $v(K^{\times}) \equiv v(K'^{\times})$ as $\mathbb{Z}[\sigma]$ -modules

then $(K, v, \sigma) \equiv (K', v', \sigma')$ as valued difference fields.

Definition

Let (K, v) be a valued field (or any expansion of a valued abelian group) and $A \subseteq K$. A couple of functions (f, f_v) where $f : K \to K$ and $f_v : v(K) \to v(K)$ is said to be *A*-compatible (or compatible on *A*) if $v(f(a)) = f_v(v(a))$ for all $a \in A$. Example

- ▶ a (σ)-monomial couple: (M, $\cdot M$) is everywhere compatible.
- (σ, σ_v) is everywhere compatible.

Definition

Let (K, v) be a valued field (or any expansion of a valued abelian group) and $A \subseteq K$. A couple of functions (f, f_v) where $f : K \to K$ and $f_v : v(K) \to v(K)$ is said to be *A*-**compatible** (or compatible on *A*) if $v(f(a)) = f_v(v(a))$ for all $a \in A$.

Example

- ▶ a (σ)-monomial couple: (M, $\cdot M$) is everywhere compatible.
- (σ, σ_v) is everywhere compatible.

Definition

Let (K, v) be a valued field (or any expansion of a valued abelian group) and $A \subseteq K$. A couple of functions (f, f_v) where $f : K \to K$ and $f_v : v(K) \to v(K)$ is said to be *A*-**compatible** (or compatible on *A*) if $v(f(a)) = f_v(v(a))$ for all $a \in A$.

Example

- ▶ a (σ)-monomial couple: (M, $\cdot M$) is everywhere compatible.
- (σ, σ_v) is everywhere compatible.

Definition

Let (K, v) be a valued field (or any expansion of a valued abelian group) and $A \subseteq K$. A couple of functions (f, f_v) where $f : K \to K$ and $f_v : v(K) \to v(K)$ is said to be *A*-**compatible** (or compatible on *A*) if $v(f(a)) = f_v(v(a))$ for all $a \in A$.

Example

- ▶ a (σ)-monomial couple: (M, $\cdot M$) is everywhere compatible.
- (σ, σ_v) is everywhere compatible.

For $P = \sum_{j} M_{j}$ a σ -polynomial and for $\gamma \in \Gamma$ we set $\gamma \cdot P := \min_{j} \{\gamma \cdot M_{j}\}$

I: (P, ·P) is in general not a compatible couple: if x a non-zero root of P, v(P(x)) = ∞ > v(x) · P.

We have the following general philosophy:

In nice valued structures, definable functions of one variable (polynomials, σ -polynomials, linear σ -polynomials, additives polynomials etc..) induces couples that we can easily describe where they are incompatible. \leftrightarrow Local Inversion Principles

- For $P = \sum_{j} M_{j}$ a σ -polynomial and for $\gamma \in \Gamma$ we set $\gamma \cdot P := \min_{j} \{\gamma \cdot M_{j}\}$
- ► 1: (P, ·P) is in general not a compatible couple: if x a non-zero root of P, v(P(x)) = ∞ > v(x) · P.

We have the following general philosophy:

In nice valued structures, definable functions of one variable (polynomials, σ -polynomials, linear σ -polynomials, additives polynomials etc..) induces couples that we can easily describe where they are incompatible. \leftrightarrow Local Inversion Principles

- For $P = \sum_{j} M_{j}$ a σ -polynomial and for $\gamma \in \Gamma$ we set $\gamma \cdot P := \min_{j} \{\gamma \cdot M_{j}\}$
- ► 1: (P, ·P) is in general not a compatible couple: if x a non-zero root of P, v(P(x)) = ∞ > v(x) · P.

We have the following general philosophy:

In nice valued structures, definable functions of one variable (polynomials, σ -polynomials, linear σ -polynomials, additives polynomials etc..) induces couples that we can easily describe where they are incompatible. \leftrightarrow Local Inversion Principles

- For $P = \sum_{j} M_{j}$ a σ -polynomial and for $\gamma \in \Gamma$ we set $\gamma \cdot P := \min_{j} \{\gamma \cdot M_{j}\}$
- ► 1: (P, ·P) is in general not a compatible couple: if x a non-zero root of P, v(P(x)) = ∞ > v(x) · P.

We have the following general philosophy:

In nice valued structures, definable functions of one variable (polynomials, σ -polynomials, linear σ -polynomials, additives polynomials etc..) induces couples that we can easily describe where they are incompatible.

→ Local Inversion Principles

- For $P = \sum_{j} M_{j}$ a σ -polynomial and for $\gamma \in \Gamma$ we set $\gamma \cdot P := \min_{j} \{\gamma \cdot M_{j}\}$
- I: (P, ·P) is in general not a compatible couple: if x a non-zero root of P, v(P(x)) = ∞ > v(x) · P.

We have the following general philosophy:

In nice valued structures, definable functions of one variable (polynomials, σ -polynomials, linear σ -polynomials, additives polynomials etc..) induces couples that we can easily describe where they are incompatible. \rightsquigarrow Local Inversion Principles

・ロト・日本・モー・モー ショー ショー

Regularity

An element $a \in K$ is said to be **regular** for a (σ -) polynomial *P*, if $v(P(a)) = v(a) \cdot P$ (in other words if $(P, \cdot P)$ is {*a*}-compatible}. Otherwise we say that it is **irregular**.

Remark

A "regular non-zero root" does not make sense and 0 is always a regular root of any polynomial without constant term.

We will consider polynomials without constant term and equations of type P(x) = b ($b \neq 0$) and say that "*a* is a regular solution" if P(a) = b with *a* regular for *P*.

Regularity

An element $a \in K$ is said to be **regular** for a (σ -) polynomial *P*, if $v(P(a)) = v(a) \cdot P$ (in other words if $(P, \cdot P)$ is $\{a\}$ -compatible). Otherwise we say that it is **irregular**.

Remark

A "regular non-zero root" does not make sense and 0 is always a regular root of any polynomial without constant term.

We will consider polynomials without constant term and equations of type P(x) = b ($b \neq 0$) and say that "*a* is a regular solution" if P(a) = b with *a* regular for *P*.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

To have an (A-K,E) principle, one may ask: Given a (σ -)polynomial *P* (at least for *P* in some *significant class*) and $a \in K$,

- Q1 is there an element x, regular for P, s.t. v(P(x)) = v(a)? (Picking the valuation of a; \rightsquigarrow weak-continuity of P)
- Q2 is there an element x, regular for P, s.t. v(P(x) - a) > v(a)? (Picking the residue class of a)
- Q3 is there an element x, regular for P, s.t. P(x) = a? (Picking a)

●●● 画 《画》《画》《画》《曰》

To have an (A-K,E) principle, one may ask: Given a (σ -)polynomial *P* (at least for *P* in some *significant class*) and $a \in K$,

- Q1 is there an element x, regular for P, s.t. v(P(x)) = v(a)? (Picking the valuation of a; \rightsquigarrow weak-continuity of P)
- Q2 is there an element *x*, regular for *P*, s.t. v(P(x) a) > v(a)? (Picking the residue class of *a*)
 Q3 is there an element *x*, regular for *P*, s.t. P(x) = a? (Picking a)

To have an (A-K,E) principle, one may ask: Given a (σ -)polynomial *P* (at least for *P* in some *significant class*) and $a \in K$,

- Q1 is there an element *x*, regular for *P*, s.t. v(P(x)) = v(a)? (Picking the valuation of *a*; \rightsquigarrow *weak*-continuity of *P*)
- Q2 is there an element *x*, regular for *P*, s.t. v(P(x) - a) > v(a)? (Picking the residue class of *a*)
- Q3 is there an element x, regular for P, s.t. P(x) = a? (Picking a)

To have an (A-K,E) principle, one may ask: Given a (σ -)polynomial *P* (at least for *P* in some *significant class*) and $a \in K$,

- Q1 is there an element *x*, regular for *P*, s.t. v(P(x)) = v(a)? (Picking the valuation of *a*; \rightsquigarrow *weak*-continuity of *P*)
- Q2 is there an element *x*, regular for *P*, s.t. v(P(x) - a) > v(a)? (Picking the residue class of *a*)
- Q3 is there an element x, regular for P, s.t. P(x) = a? (Picking a)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

 $Jump(P) := \{v(x) \mid x \text{ irregular for } P\}$

example: Take $P(X) := X^p - X$, $K := \mathbb{F}_p(t)$. $Jump(P) = \{0\}$ and every $x \in K$ with v(x) = 0 is irregular.

- ► Jump(P) is finite \Rightarrow P is "continuous" : for every pseudo-Cauchy (p.c.) sequence $(a_{\rho})_{\rho}$ in K, with a limit a, $(P(a_{\rho}))_{\rho}$ has limit P(a).
- If P ∈ K[X] or if P is any σ-polynomial with σ contractive
 (:σ_ν(γ) > nγ for all γ > 0 and n ∈ ℕ) then Jump(P) is finite.
- if σ is not contractive this can be drastically false: beacause $a_{\rho+1} - a_{\rho}$ can be always irregular for *P*.
- if σ_v is auto-increasing then σ-linear polynomials are continous.

・ロ・・日・・日・・日・ のへぐ

 $Jump(P) := \{v(x) \mid x \text{ irregular for } P\}$

example: Take $P(X) := X^p - X$, $K := \mathbb{F}_p(t)$. $Jump(P) = \{0\}$ and every $x \in K$ with v(x) = 0 is irregular.

- Jump(P) is finite ⇒ P is "continuous" : for every pseudo-Cauchy (p.c.) sequence (a_ρ)_ρ in K, with a limit a, (P(a_ρ))_ρ has limit P(a).
- If P ∈ K[X] or if P is any σ-polynomial with σ contractive
 (:σ_ν(γ) > nγ for all γ > 0 and n ∈ N) then Jump(P) is finite.
- ▶ if σ is not contractive this can be drastically false: beacause $a_{\rho+1} - a_{\rho}$ can be always irregular for *P*.
- if σ_ν is auto-increasing then σ-linear polynomials are continous.

・ロ・・日・・日・・日・ のへぐ

 $Jump(P) := \{v(x) \mid x \text{ irregular for } P\}$

example: Take $P(X) := X^p - X$, $K := \mathbb{F}_p(t)$. $Jump(P) = \{0\}$ and every $x \in K$ with v(x) = 0 is irregular.

- ► Jump(P) is finite $\Rightarrow P$ is "continuous" : for every pseudo-Cauchy (p.c.) sequence $(a_{\rho})_{\rho}$ in *K*, with a limit *a*, $(P(a_{\rho}))_{\rho}$ has limit P(a).
- If P ∈ K[X] or if P is any σ-polynomial with σ contractive (:σ_ν(γ) > nγ for all γ > 0 and n ∈ ℕ) then Jump(P) is finite.
- ▶ if σ is not contractive this can be drastically false: beacause $a_{\rho+1} - a_{\rho}$ can be always irregular for *P*.
- if σ_ν is auto-increasing then σ-linear polynomials are continous.

 $Jump(P) := \{v(x) \mid x \text{ irregular for } P\}$

example: Take $P(X) := X^p - X$, $K := \mathbb{F}_p(t)$. $Jump(P) = \{0\}$ and every $x \in K$ with v(x) = 0 is irregular.

- ► Jump(P) is finite $\Rightarrow P$ is "continuous" : for every pseudo-Cauchy (p.c.) sequence $(a_{\rho})_{\rho}$ in *K*, with a limit *a*, $(P(a_{\rho}))_{\rho}$ has limit P(a).
- If P ∈ K[X] or if P is any σ-polynomial with σ contractive (:σ_ν(γ) > nγ for all γ > 0 and n ∈ N) then Jump(P) is finite.
- ▶ if σ is not contractive this can be drastically false: beacause $a_{\rho+1} - a_{\rho}$ can be always irregular for *P*.
- if σ_ν is auto-increasing then σ-linear polynomials are continous.

 $Jump(P) := \{v(x) \mid x \text{ irregular for } P\}$

example: Take $P(X) := X^p - X$, $K := \mathbb{F}_p(t)$. $Jump(P) = \{0\}$ and every $x \in K$ with v(x) = 0 is irregular.

- ► Jump(P) is finite $\Rightarrow P$ is "continuous" : for every pseudo-Cauchy (p.c.) sequence $(a_{\rho})_{\rho}$ in *K*, with a limit *a*, $(P(a_{\rho}))_{\rho}$ has limit P(a).
- If P ∈ K[X] or if P is any σ-polynomial with σ contractive (:σ_ν(γ) > nγ for all γ > 0 and n ∈ N) then Jump(P) is finite.
- If σ is not contractive this can be drastically false: beacause a_{ρ+1} − a_ρ can be always irregular for P.
- if σ_v is auto-increasing then σ -linear polynomials are continous.

 $Jump(P) := \{v(x) \mid x \text{ irregular for } P\}$

example: Take $P(X) := X^p - X$, $K := \mathbb{F}_p(t)$. $Jump(P) = \{0\}$ and every $x \in K$ with v(x) = 0 is irregular.

- ► Jump(P) is finite $\Rightarrow P$ is "continuous" : for every pseudo-Cauchy (p.c.) sequence $(a_{\rho})_{\rho}$ in *K*, with a limit *a*, $(P(a_{\rho}))_{\rho}$ has limit P(a).
- ▶ If $P \in K[X]$ or if P is any σ -polynomial with σ contractive $(:\sigma_v(\gamma) > n\gamma \text{ for all } \gamma > 0 \text{ and } n \in \mathbb{N})$ then Jump(P) is finite.
- If σ is not contractive this can be drastically false: beacause a_{ρ+1} − a_ρ can be always irregular for P.
- if σ_v is auto-increasing then σ -linear polynomials are continous.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

 $Jump(P) := \{v(x) \mid x \text{ irregular for } P\}$

example: Take $P(X) := X^p - X$, $K := \mathbb{F}_p(t)$. $Jump(P) = \{0\}$ and every $x \in K$ with v(x) = 0 is irregular.

- ► Jump(P) is finite $\Rightarrow P$ is "continuous" : for every pseudo-Cauchy (p.c.) sequence $(a_{\rho})_{\rho}$ in *K*, with a limit *a*, $(P(a_{\rho}))_{\rho}$ has limit P(a).
- If P ∈ K[X] or if P is any σ-polynomial with σ contractive (:σ_ν(γ) > nγ for all γ > 0 and n ∈ N) then Jump(P) is finite.
- If σ is not contractive this can be drastically false: beacause a_{ρ+1} − a_ρ can be always irregular for P.
- if σ_ν is auto-increasing then σ-linear polynomials are continous.

・ロト・日本・モー・モー ショー ショー

A linear σ -polynomial is one of the form: $a_n \sigma^n(x) + \cdots + a_1 x$.

Let (K, v) is of equal characteristic (p, p) (p > 0). An **additive polynomial** is an linear Frob-polynomial, i.e. is of the form: $a_n p^n(x) + \cdots + a_1 x$

Definition

A valued field (K, v) is said to be **Kaplansky** if v(K) is *p*-divisible and if every equation of the form P(x) = b where $P \in k[X]$, is additive, has solutions in *k*; it is said to be algebraically maximal if it has no proper algebraic extension with same residue field and same value group (that is it has no *immediate* algebraic extension).

◆□ ▶ ◆□ ▶ ◆目 ▶ ◆□ ▶ ◆□ ▶

A linear σ -polynomial is one of the form: $a_n \sigma^n(x) + \cdots + a_1 x$.

Let (K, v) is of equal characteristic (p, p) (p > 0). An **additive polynomial** is an linear Frob-polynomial, i.e. is of the form: $a_n p^n(x) + \cdots + a_1 x$

Definition

A valued field (K, v) is said to be **Kaplansky** if v(K) is *p*-divisible and if every equation of the form P(x) = b where $P \in k[X]$, is additive, has solutions in *k*; it is said to be algebraically maximal if it has no proper algebraic extension with same residue field and same value group (that is it has no *immediate* algebraic extension).

A linear σ -polynomial is one of the form: $a_n \sigma^n(x) + \cdots + a_1 x$.

Let (K, v) is of equal characteristic (p, p) (p > 0). An **additive polynomial** is an linear Frob-polynomial, i.e. is of the form: $a_n p^n(x) + \cdots + a_1 x$

Definition

A valued field (K, v) is said to be **Kaplansky** if v(K) is *p*-divisible and if every equation of the form P(x) = b where $P \in k[X]$, is additive, has solutions in *k*; it is said to be algebraically maximal if it has no proper algebraic extension with same residue field and same value group (that is it has no *immediate* algebraic extension).

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆○ ●

A linear σ -polynomial is one of the form: $a_n \sigma^n(x) + \cdots + a_1 x$.

Let (K, v) is of equal characteristic (p, p) (p > 0). An **additive polynomial** is an linear Frob-polynomial, i.e. is of the form: $a_n p^n(x) + \cdots + a_1 x$

Definition

A valued field (K, v) is said to be **Kaplansky** if v(K) is *p*-divisible and if every equation of the form P(x) = b where $P \in k[X]$, is additive, has solutions in *k*; it is said to be algebraically maximal if it has no proper algebraic extension with same residue field and same value group (that is it has no *immediate* algebraic extension).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

A linear σ -polynomial is one of the form: $a_n \sigma^n(x) + \cdots + a_1 x$.

Let (K, v) is of equal characteristic (p, p) (p > 0). An **additive polynomial** is an linear Frob-polynomial, i.e. is of the form: $a_n p^n(x) + \cdots + a_1 x$

Definition

A valued field (K, v) is said to be **Kaplansky** if v(K) is *p*-divisible and if every equation of the form P(x) = b where $P \in k[X]$, is additive, has solutions in *k*; it is said to be algebraically maximal if it has no proper algebraic extension with same residue field and same value group (that is it has no *immediate* algebraic extension).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Two very similar caracterization of algebraically maximal Kaplasky fields

Theorem (O.)

A Kaplansky field is algebraically maximal if and only if every equation of the form P(x) = b ($b \neq 0$), where $P \in K[X]$ is additive, has a regular solution.

Theorem (Durhan)

A Kaplansky field is algebraically maximal if and only if it is *p*-henselian.

Two very similar caracterization of algebraically maximal Kaplasky fields

Theorem (O.)

A Kaplansky field is algebraically maximal if and only if every equation of the form P(x) = b ($b \neq 0$), where $P \in K[X]$ is additive, has a regular solution.

Theorem (Durhan)

A Kaplansky field is algebraically maximal if and only if it is *p*-henselian.

- We have (A-K,E) principle for algebraically maximal Kaplansky fields.
- Theorem (O.): They are C-minimal as valued modules over the ring of its additive polynomials, whenever they have a divisible value group.

 \Rightarrow significant class = {additive polynomials}

・ロ・・ 「「・・」・ 「」・ (日・・ 日・

- We have (A-K,E) principle for algebraically maximal Kaplansky fields.
- Theorem (O.): They are C-minimal as valued modules over the ring of its additive polynomials, whenever they have a divisible value group.

 \Rightarrow significant class = {additive polynomials}

・ロ・・ 「「・・」・ 「」・ (日・・ 日・

- We have (A-K,E) principle for algebraically maximal Kaplansky fields.
- Theorem (O.): They are C-minimal as valued modules over the ring of its additive polynomials, whenever they have a divisible value group.

 \Rightarrow significant class = {additive polynomials}

- We have (A-K,E) principle for algebraically maximal Kaplansky fields.
- Theorem (O.): They are C-minimal as valued modules over the ring of its additive polynomials, whenever they have a divisible value group.
- \Rightarrow significant class = {additive polynomials}

General case

(*) We suppose $\overline{\sigma}^n \neq Id$ on k, for all $n \in \mathbb{N} \setminus \{0\}$.

Lemma (weak continuity)

Given a p.c. sequence $(a_{\rho})_{\Omega}$ in K, $a \in K$, such that $(a_{\rho})_{\rho}$ converges to a and a σ -polynomial P, we can find a p.c. sequence $(b_{\lambda})_{\lambda}$ such that $(a_{\rho})_{\rho}$ and $(b_{\lambda})_{\lambda}$ have same limits , $(P(b_{\rho}))_{\rho}$ converges to P(a).

Proof.

(Main trick) Using above assumption we can find $(b_{\lambda})_{\lambda \in \Lambda}$ with Λ cofinal in Ω , such that $b_{\lambda+1} - b_{\lambda}$ is eventually regular for P. \Box

・ロ・・日・・日・・日・ のへぐ

General case

(*) We suppose $\overline{\sigma}^n \neq Id$ on k, for all $n \in \mathbb{N} \setminus \{0\}$.

Lemma (weak continuity)

Given a p.c. sequence $(a_{\rho})_{\Omega}$ in K, $a \in K$, such that $(a_{\rho})_{\rho}$ converges to a and a σ -polynomial P, we can find a p.c. sequence $(b_{\lambda})_{\lambda}$ such that $(a_{\rho})_{\rho}$ and $(b_{\lambda})_{\lambda}$ have same limits, $(P(b_{\rho}))_{\rho}$ converges to P(a).

Proof.

(Main trick) Using above assumption we can find $(b_{\lambda})_{\lambda \in \Lambda}$ with Λ cofinal in Ω , such that $b_{\lambda+1} - b_{\lambda}$ is eventually regular for *P*. \Box

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Searching the significant class

From now on we consider the case of equal characteristic (0,0).

Definition

Given a σ -polynomial *P* we denote Lin(P) the σ -linear part of *P*. Let $a \in K$, we say that (P, a) is in σ -hensel configuration if there exists $\gamma \in \Gamma$ such that

1.
$$v(P(a)) = \gamma \cdot Lin(P)$$

2. $\gamma \cdot M < \gamma \cdot M'$ whenever M, M' are monomials of P such that $(0, \ldots, 0) \neq ind(M) < ind(M')$.

(日) (四) (日) (日) (日) (日) (日)

Lemma

Suppose that (K, v, σ) is σ -algebraically maximal and $(k, \overline{\sigma})$ is linearly difference closed, that is: for every $\overline{\sigma}$ -linear Q, and $c \in k$ the equation Q(x) = c has solution in k. Conclusion: For every σ -polynomial P and $b \in K^{\times}$ if for some $a \in K$ such that v(P(a)) = b, (P, a) is in σ -hensel configuration then there is a regular solution of the equation P(x) = b.

Definition

 (K, v, σ) is said to be σ -henselian if the conclusion of the above lemma holds.

Lemma

Suppose that (K, v, σ) is σ -algebraically maximal and $(k, \bar{\sigma})$ is linearly difference closed, that is: for every $\bar{\sigma}$ -linear Q, and

 $c \in k$ the equation Q(x) = c has solution in k.

Conclusion: For every σ -polynomial P and $b \in K^{\times}$ if for some $a \in K$ such that v(P(a)) = b, (P, a) is in σ -hensel configuration then there is a regular solution of the equation P(x) = b.

Definition

 (K, v, σ) is said to be σ -henselian if the conclusion of the above lemma holds.

Lemma

Suppose that (K, v, σ) is σ -algebraically maximal and $(k, \bar{\sigma})$ is **linearly difference closed**, that is: for every $\bar{\sigma}$ -linear Q, and $c \in k$ the equation Q(x) = c has solution in k.

Conclusion: For every σ -polynomial P and $b \in K^{\times}$ if for some $a \in K$ such that v(P(a)) = b, (P, a) is in σ -hensel configuration then there is a regular solution of the equation P(x) = b.

Definition

 (K, v, σ) is said to be σ -henselian if the conclusion of the above lemma holds.

Lemma

Suppose that (K, v, σ) is σ -algebraically maximal and $(k, \bar{\sigma})$ is linearly difference closed, that is: for every $\bar{\sigma}$ -linear Q, and $c \in k$ the equation Q(x) = c has solution in k. Conclusion: For every σ -polynomial P and $b \in K^{\times}$ if for some $a \in K$ such that v(P(a)) = b, (P, a) is in σ -hensel configuration then there is a regular solution of the equation P(x) = b.

Definition

 (K, v, σ) is said to be σ -henselian if the conclusion of the above lemma holds.

・ロト・日本・モー・モー ショー ショー

Draft Results

- All algebraic, immediate, σ-algebraically maximal extensions of a valued difference field with a linearly difference closed residue field are isomorphic.
- (A-K,E) principle for holds for the class of σ-henselian valued difference fields of characteristic (0,0) with linearly difference closed residue field.

Draft Results

- All algebraic, immediate, σ-algebraically maximal extensions of a valued difference field with a linearly difference closed residue field are isomorphic.
- (A-K,E) principle for holds for the class of *σ*-henselian valued difference fields of characteristic (0,0) with linearly difference closed residue field.