Let K be an algebraically closed field and $n \in \mathbb{N}_{>0}$.

(1) Let X be a Noetherian topological space and

$$X = \bigcup_{i \in I} U_i$$

be an open cover of X. Show that:

$$\dim(X) = \sup_{i \in I} \dim(U_i).$$

(Therefore $\dim(\mathbb{P}^n) = n$.)

- (2) Show that each two lines in \mathbb{P}^2 have a non-empty intersection.
- (3) Let H ∈ K[X₁,...,X_n] and d ∈ N. Show that the following are equivalent:
 (a) the polynomial H is homogenous of degree d;
 - (b) for each $\lambda \in K$, we have the following equality of polynomials:

$$H(\lambda X_1, \dots, \lambda X_n) = \lambda^d H$$

- (4) Let $F \in K[X_1, \ldots, X_n]$, $d \in \mathbb{N}$, and assume that:
 - (a) $F = F_0 + \ldots + F_d;$
 - (b) $F_d \neq 0;$

(c) for each $i \leq d$, the polynomial F_i is homogenous of degree i or $F_i = 0$. Show that:

$$\sum_{i=0}^{d} X_{n+1}^{d-i} F_i = X_{n+1}^{d} F\left(\frac{X_1}{X_{n+1}}, \dots, \frac{X_n}{X_{n+1}}\right).$$

- (5) Find the points at infinity of the following projective plane curves and check whether these points are smooth:
 - (a) $V(\alpha X + \beta Y + 1)$ for a fixed $(\alpha, \beta) \in K^2 \setminus \{(0, 0)\};$
 - (b) $V(Y^2 X^3);$
 - (c) $V(X^3 + Y^3 + 1);$
 - (d) the curves from Problem 5.8.