Geometria algebraiczna, Problem List 8

Let K be an algebraically closed field and $n \in \mathbb{N}_{>0}$.
(1) Let X be a Noetherian topological space and

$$
X=\bigcup_{i \in I} U_{i}
$$

be an open cover of X. Show that:

$$
\operatorname{dim}(X)=\sup _{i \in I} \operatorname{dim}\left(U_{i}\right) .
$$

(Therefore $\operatorname{dim}\left(\mathbb{P}^{n}\right)=n$.)
(2) Show that each two lines in \mathbb{P}^{2} have a non-empty intersection.
(3) Let $H \in K\left[X_{1}, \ldots, X_{n}\right]$ and $d \in \mathbb{N}$. Show that the following are equivalent:
(a) the polynomial H is homogenous of degree d;
(b) for each $\lambda \in K$, we have the following equality of polynomials:

$$
H\left(\lambda X_{1}, \ldots, \lambda X_{n}\right)=\lambda^{d} H
$$

(4) Let $F \in K\left[X_{1}, \ldots, X_{n}\right], d \in \mathbb{N}$, and assume that:
(a) $F=F_{0}+\ldots+F_{d}$;
(b) $F_{d} \neq 0$;
(c) for each $i \leqslant d$, the polynomial F_{i} is homogenous of degree i or $F_{i}=0$.

Show that:

$$
\sum_{i=0}^{d} X_{n+1}^{d-i} F_{i}=X_{n+1}^{d} F\left(\frac{X_{1}}{X_{n+1}}, \ldots, \frac{X_{n}}{X_{n+1}}\right) .
$$

(5) Find the points at infinity of the following projective plane curves and check whether these points are smooth:
(a) $V(\alpha X+\beta Y+1)$ for a fixed $(\alpha, \beta) \in K^{2} \backslash\{(0,0)\}$;
(b) $V\left(Y^{2}-X^{3}\right)$;
(c) $V\left(X^{3}+Y^{3}+1\right)$;
(d) the curves from Problem 5.8.

