Geometria algebraiczna, Problem List 7

Let K be an algebraically closed field, R be a ring, and $m, n \in \mathbb{N}_{>0}$.

(1) Let $k_1, \ldots, k_n \in \mathbb{N}_{>0}$ and $F \in K[X] \setminus \{0\}$. (a) Show the following:

$$\dim_K(K[X]/(F)) = \deg(F).$$

(b) Calculate the following:

$$\dim_K \left(K[X_1,\ldots,X_n]/(X_1^{k_1},\ldots,X_n^{k_n}) \right).$$

- (2) Let $I, J \leq R$ and $I \subset \sqrt{J}$. Show that if I is finitely generated, then there is $n \in \mathbb{N}$ such that $I^n \subseteq J$.
- (3) Let $P \subseteq I \subseteq Q$ be ideals in a domain R such that P and Q are prime. Show that: (ת / ת)

$$\frac{R_Q}{IR_Q} \cong \frac{(R/P)_{Q/P}}{I/P(R/P)_{Q/P}}.$$

- (4) Let C be an affine curve, $v \in C$ be a smooth point, and $f \in K(C)$. Show that f is a local parameter for C at v if and only if f has a zero at v of order one.
- (5) Let C be a plane curve and let $0 = (0,0) \in C$. Show that the tangent space $T_0(C)$ (understood here as $\pi_C^{-1}(0) \subseteq \mathbb{A}^2$, where $\pi_C: TC \to C$ is the projection morphism) is the union of tangent lines to C at 0.
- (6) Calculate the following intersection numbers:

 - (a) $I(0, (Y X^2) \cap (Y^m + X^{2m}));$ (b) $I(0, (Y^4 + X^4 X^2) \cap (Y^2 X^3 + X^2));$
 - (c) $I(0, (Y^4X^3 + X^4Y^2 X^2 + Y^7 + Y^2 + Y) \cap (Y^2 Y^5X^3 + 1 + X^2));$
 - (d) $I(0, (XY^4 + X^4 X^2 + X^8 + X) \cap (XY^2 X^3 + X^2)).$
- (7) Let S be a multiplicative subset of R.
 - (a) Give the definition of the localization ring R_S (R need not be a domain!).
 - (b) Describe the kernel of the following ring homomorphism:

$$\varphi: R \to R_S, \quad \varphi(r) = \frac{r}{1}.$$

(c) Let P be a prime ideal in R and $e \in R \setminus P$ be such that $e^2 = e$ (an *idempotent* element). Let $\varphi : R \to R_P$ be as in Item (b) above. Show that φ restricted to eR induces an isomorphism of rings (with 1):

$$eR \cong R_P.$$

- (8) Assume that $e_1, \ldots, e_m \in R$ satisfy the following:
 - (a) $e_1^2 = e_1, \dots, e_m^2 = e_m;$
 - (b) $e_1 + \ldots + e_m = 1;$

(c) for each $i \neq j$, we have $e_i e_j = 0$.

Show that the following function:

$$f: R \to e_1 R \times \ldots \times e_m R, \quad f(r) = (re_1, \ldots, re_m)$$

is an isomorphism of rings (with 1).

(9) Assume that I, J are ideals in R such that I + J = R. Show that:

$$I^n + J^m = R.$$