Let $K$ be an algebraically closed field, $R$ be a ring, and $m, n \in \mathbb{N}_{>0}$.
(1) Let $k_{1}, \ldots, k_{n} \in \mathbb{N}_{>0}$ and $F \in K[X] \backslash\{0\}$.
(a) Show the following:

$$
\operatorname{dim}_{K}(K[X] /(F))=\operatorname{deg}(F)
$$

(b) Calculate the following:

$$
\operatorname{dim}_{K}\left(K\left[X_{1}, \ldots, X_{n}\right] /\left(X_{1}^{k_{1}}, \ldots, X_{n}^{k_{n}}\right)\right)
$$

(2) Let $I, J \preccurlyeq R$ and $I \subseteq \sqrt{J}$. Show that if $I$ is finitely generated, then there is $n \in \mathbb{N}$ such that $I^{n} \subseteq J$.
(3) Let $P \subseteq I \subseteq Q$ be ideals in a domain $R$ such that $P$ and $Q$ are prime. Show that:

$$
\frac{R_{Q}}{I R_{Q}} \cong \frac{(R / P)_{Q / P}}{I / P(R / P)_{Q / P}}
$$

(4) Let $C$ be an affine curve, $v \in C$ be a smooth point, and $f \in K(C)$. Show that $f$ is a local parameter for $C$ at $v$ if and only if $f$ has a zero at $v$ of order one.
(5) Let $C$ be a plane curve and let $0=(0,0) \in C$. Show that the tangent space $T_{0}(C)$ (understood here as $\pi_{C}^{-1}(0) \subseteq \mathbb{A}^{2}$, where $\pi_{C}: T C \rightarrow C$ is the projection morphism) is the union of tangent lines to $C$ at 0 .
(6) Calculate the following intersection numbers:
(a) $I\left(0,\left(Y-X^{2}\right) \cap\left(Y^{m}+X^{2 m}\right)\right)$;
(b) $I\left(0,\left(Y^{4}+X^{4}-X^{2}\right) \cap\left(Y^{2}-X^{3}+X^{2}\right)\right)$;
(c) $I\left(0,\left(Y^{4} X^{3}+X^{4} Y^{2}-X^{2}+Y^{7}+Y^{2}+Y\right) \cap\left(Y^{2}-Y^{5} X^{3}+1+X^{2}\right)\right)$;
(d) $I\left(0,\left(X Y^{4}+X^{4}-X^{2}+X^{8}+X\right) \cap\left(X Y^{2}-X^{3}+X^{2}\right)\right)$.
(7) Let $S$ be a multiplicative subset of $R$.
(a) Give the definition of the localization ring $R_{S}$ ( $R$ need not be a domain!).
(b) Describe the kernel of the following ring homomorphism:

$$
\varphi: R \rightarrow R_{S}, \quad \varphi(r)=\frac{r}{1} .
$$

(c) Let $P$ be a prime ideal in $R$ and $e \in R \backslash P$ be such that $e^{2}=e$ (an idempotent element). Let $\varphi: R \rightarrow R_{P}$ be as in Item (b) above. Show that $\varphi$ restricted to $e R$ induces an isomorphism of rings (with 1 ):

$$
e R \cong R_{P} .
$$

(8) Assume that $e_{1}, \ldots, e_{m} \in R$ satisfy the following:
(a) $e_{1}^{2}=e_{1}, \ldots, e_{m}^{2}=e_{m}$;
(b) $e_{1}+\ldots+e_{m}=1$;
(c) for each $i \neq j$, we have $e_{i} e_{j}=0$.

Show that the following function:

$$
f: R \rightarrow e_{1} R \times \ldots \times e_{m} R, \quad f(r)=\left(r e_{1}, \ldots, r e_{m}\right)
$$

is an isomorphism of rings (with 1 ).
(9) Assume that $I, J$ are ideals in $R$ such that $I+J=R$. Show that:

$$
I^{n}+J^{m}=R .
$$

