Geometria algebraiczna, Problem List 5

Let K be an algebraically closed field and m, n, k > 0.

(1) Let T be a domain. We define:

 $\partial: T[X] \to T[X], \ \partial(a_0 + a_1 X + \ldots + a_{n-1} X^{n-1} + a_n X^n) = a_1 + \ldots + (n-1)a_{n-1} X^{n-2} + na_n X^{n-1}.$ Show that:

Show that:

- (a) the function ∂ is a derivation;
- (b) if char(T) = 0, then $\partial^{-1}(0) = T$;
- (c) if char(T) = p > 0, then $\partial^{-1}(0) = T[X^p]$.
- (2) Suppose the following:
 - $G_1,\ldots,G_k,F_1,\ldots,F_m\in K[X_1,\ldots,X_n];$
 - $G_1,\ldots,G_k\in(F_1,\ldots,F_m);$
 - $\bar{F} := (F_1, \dots, F_m), \ \bar{G} := (G_1, \dots, G_k), \ v \in V(\bar{F}).$

Show that each row of the matrix $J_{\bar{G}}(v)$ is a K-linear combination of the rows of the matrix $J_{\bar{F}}(v)$.

(3) Let $F_1, \ldots, F_n \in K[X_1, \ldots, X_n]$ and

$$\bar{F} = (F_1, \ldots, F_n) : \mathbb{A}^n \to \mathbb{A}^r$$

be a morphism.

- (a) Show that if \overline{F} is an isomorphism, then $\det(J_{\overline{F}}) \in K^*$.
- (b) What do you think about the converse implication?
- (4) Assume that $K = \mathbb{C}$ and $V \subseteq \mathbb{A}^n$ is a smooth algebraic variety. Show that V is a complex submanifold of \mathbb{C}^n (or a differentiable submanifold of \mathbb{R}^{2n}). In particular, V becomes a manifold in the sense of differential geometry.
- (5) Let P be a prime ideal of a domain R. Show the following.
 - (a) We have an R-algebra isomorphism:

$$(R/P)_0 \cong_R R_P/PR_P.$$

- (b) The quotients P/P^2 and $PR_P/(PR_P)^2$ have natural structures of R/P-modules.
- (c) If the ideal P is maximal, then we have an R/P-module isomorphism: $P/P^2 \cong_{R/P} PR_P/(PR_P)^2.$
- (6) Assume that $F, G \in K[X, Y]$ are irreducible and F does not divide G. Let $V = V(FG) \subseteq \mathbb{A}^2$ and $a \in V$ be such that F(a) = G(a) = 0. Show that a is a singular point of V.
- (7) Let $F \in K[X, Y]$ and $V = V(F) \subseteq \mathbb{A}^2$. Show that: (a) if $V(F, \frac{\partial F}{\partial X}, \frac{\partial F}{\partial Y})$ is finite, then $\sqrt{(F)} = (F)$ and I(V) = (F); (b) if $V(F, \frac{\partial F}{\partial X}, \frac{\partial F}{\partial Y}) = \emptyset$, then V is a smooth algebraic variety.
- (8) Suppose that $\operatorname{char}(K) \neq 2$. For $F \in K[X, Y]$ given below, find the singular points of V(F) and show the curve V(F) on the picture below.

(a)
$$F = Y^4 + X^4 - X^2$$
.

(b)
$$F = Y^{\circ} + X^{\circ} - XY$$
.

(c) $F = Y^4 + X^4 + Y^2 - X^3$.

(d)
$$F = Y^4 + X^4 - X^2Y - XY^2$$

