Geometria algebraiczna, Problem List 5

Let K be an algebraically closed field and $m, n, k>0$.
(1) Let T be a domain. We define:
$\partial: T[X] \rightarrow T[X], \partial\left(a_{0}+a_{1} X+\ldots+a_{n-1} X^{n-1}+a_{n} X^{n}\right)=a_{1}+\ldots+(n-1) a_{n-1} X^{n-2}+n a_{n} X^{n-1}$.
Show that:
(a) the function ∂ is a derivation;
(b) if $\operatorname{char}(T)=0$, then $\partial^{-1}(0)=T$;
(c) if $\operatorname{char}(T)=p>0$, then $\partial^{-1}(0)=T\left[X^{p}\right]$.
(2) Suppose the following:

- $G_{1}, \ldots, G_{k}, F_{1}, \ldots, F_{m} \in K\left[X_{1}, \ldots, X_{n}\right] ;$
- $G_{1}, \ldots, G_{k} \in\left(F_{1}, \ldots, F_{m}\right)$;
- $\bar{F}:=\left(F_{1}, \ldots, F_{m}\right), \bar{G}:=\left(G_{1}, \ldots, G_{k}\right), v \in V(\bar{F})$.

Show that each row of the matrix $J_{\bar{G}}(v)$ is a K-linear combination of the rows of the matrix $J_{\bar{F}}(v)$.
(3) Let $F_{1}, \ldots, F_{n} \in K\left[X_{1}, \ldots, X_{n}\right]$ and

$$
\bar{F}=\left(F_{1}, \ldots, F_{n}\right): \mathbb{A}^{n} \rightarrow \mathbb{A}^{n}
$$

be a morphism.
(a) Show that if \bar{F} is an isomorphism, then $\operatorname{det}\left(J_{\bar{F}}\right) \in K^{*}$.
(b) What do you think about the converse implication?
(4) Assume that $K=\mathbb{C}$ and $V \subseteq \mathbb{A}^{n}$ is a smooth algebraic variety. Show that V is a complex submanifold of \mathbb{C}^{n} (or a differentiable submanifold of $\mathbb{R}^{2 n}$). In particular, V becomes a manifold in the sense of differential geometry.
(5) Let P be a prime ideal of a domain R. Show the following.
(a) We have an R-algebra isomorphism:

$$
(R / P)_{0} \cong_{R} R_{P} / P R_{P}
$$

(b) The quotients P / P^{2} and $P R_{P} /\left(P R_{P}\right)^{2}$ have natural structures of R / P modules.
(c) If the ideal P is maximal, then we have an R / P-module isomorphism:

$$
P / P^{2} \cong_{R / P} P R_{P} /\left(P R_{P}\right)^{2}
$$

(6) Assume that $F, G \in K[X, Y]$ are irreducible and F does not divide G. Let $V=V(F G) \subseteq \mathbb{A}^{2}$ and $a \in V$ be such that $F(a)=G(a)=0$. Show that a is a singular point of V.
(7) Let $F \in K[X, Y]$ and $V=V(F) \subseteq \mathbb{A}^{2}$. Show that:
(a) if $V\left(F, \frac{\partial F}{\partial X}, \frac{\partial F}{\partial Y}\right)$ is finite, then $\sqrt{(F)}=(F)$ and $I(V)=(F)$;
(b) if $V\left(F, \frac{\partial F}{\partial X}, \frac{\partial F}{\partial Y}\right)=\emptyset$, then V is a smooth algebraic variety.
(8) Suppose that $\operatorname{char}(K) \neq 2$. For $F \in K[X, Y]$ given below, find the singular points of $V(F)$ and show the curve $V(F)$ on the picture below.
(a) $F=Y^{4}+X^{4}-X^{2}$.
(b) $F=Y^{6}+X^{6}-X Y$.
(c) $F=Y^{4}+X^{4}+Y^{2}-X^{3}$.
(d) $F=Y^{4}+X^{4}-X^{2} Y-X Y^{2}$.

