Let $K \subseteq L$ be an extension of fields, $A \subseteq L$, $a, b \in L$, and $n \in \mathbb{N}$.

- (1) Show that there is a tower of fields $K \subseteq L_0 \subseteq L$ such that the extension $K \subseteq L_0$ is purely transcendental and the extension $L_0 \subseteq L$ is algebraic. (**Definition:** A field extension $K \subseteq L_0$ is *purely transcendental*, if there is $B \subseteq L_0$ such that B is algebraically independent over K and $L_0 = K(B)$.)
- (2) Show that if $K \subseteq L$ is purely transcendental, then for each $x \in L \setminus K$, we have that x is transcendental over K.
- (3) Find an example of a field extension $K \subseteq M$ such that:
 - (a) For each $x \in M \setminus K$, x is transcendental over K, but the extension $K \subseteq M$ is not purely transcendental.
 - (b) There is no tower of fields $K \subseteq L \subseteq M$ such that the extension $K \subseteq L$ is algebraic and the extension $L \subseteq M$ is purely transcendental.
- (4) Assume that $a \notin A$. Show that $A \cup \{a\}$ is algebraically independent over K if and only if A is algebraically independent over K and a is transcendental over K(A).
- (5) Show that A is a transcendence basis of L over K if and only if A is algebraically independent over K and the extension $K(A) \subseteq L$ is algebraic. (**Definition:** A subset $A \subseteq L$ is a *transcendence basis* of L over K, if A is a maximal subset of L which is algebraically independent over K.)
- (6) Steinitz Exchange Principle Show that if a is algebraic over K(A ∪ {b}) and a is transcendental over K(A), then b is algebraic over K(A ∪ {a}).
- (7) Show that if B and B' are transcendental bases of L over K, then |B| = |B'|. (**Definition:** The cardinality of B above is called the *transcendence degree* of L over K and denoted $\operatorname{trdeg}_{K}L$.)
- (8) Assume that M is a field, $\varphi : K \to M$ is an isomorphism and $K \subseteq K'$, $M \subseteq M'$ are algebraic closures. Show that φ extends to an isomorphism between K' and M'.
- (9) Let $K \subseteq L'$ be a field extension such that:

$$\operatorname{trdeg}_{K} L = \operatorname{trdeg}_{K} L'.$$

Show that if L and L' are algebraically closed, then $L \cong_K L'$.

- (10) Show that if L and L' are uncountable algebraically closed fields of the same characteristic and the same cardinality, then $L \cong L'$.
- (11) Assume that $F \in K[X, Y]$ is irreducible and let $L := (K[X, Y]/(F))_0$. Show that $\operatorname{trdeg}_K L = 1$.
- (12) The following result is called Zariski's Lemma: "If $F \subseteq L$ is a field extension such that L is a finitely generated F-algebra, then $F \subseteq L$ is a finite field extension." Show that Zariski's Lemma implies Weak Hilbert's Nullstellensatz.
- (13) Let P be a prime ideal in a ring R and I, J be ideals in R such that $P = I \cap J$. Show that P = I or P = J.
- (14) Let R be a ring, $u \in R^*$, and $a \in R$. Show that the map

$$R \ni r \mapsto r + (uX + a) \in R[X]/(uX + a)$$

is a ring isomorphism.

(15) For which n, the polynomial $Y^2 - X^n \in K[X, Y]$ is irreducible?