Geometria algebraiczna, Problem List 1

Let X be a non-empty topological space, V be an affine variety, $n \in \mathbb{N}_{>0}$, K be an algebraically closed field and $\mathbb{A}^{n}=K^{n}$.
(1) Show that if X is Noetherian, then X is quasi-compact, i.e. every open covering of X contains a finite open subcovering of X.
(2) Show that if $Y \subseteq X$, then $\operatorname{dim}(Y) \leqslant \operatorname{dim}(X)$, where Y has the subspace topology.
(3) Give an example of X such that X is Noetherian and $\operatorname{dim}(X)=\infty$.
(4) Show that X is Hausdorff and Noetherian if and only if X is finite with the discrete topology.
(5) Show that if X is irreducible and Hausdorff, then $|X|=1$.
(6) Let $Y \subseteq X$. Show that Y is irreducible (as a topological space with the topology induced from X) if and only if the closure of Y is irreducible.
(7) Show that if X is Noetherian and T_{1} (singletons are closed), then

$$
\operatorname{dim}(X)=0 \text { if and only if } X \text { is finite. }
$$

(8) Suppose that X is irreducible, $Y \subseteq X$ is closed and $\operatorname{dim}(Y)=\operatorname{dim}(X)<\infty$. Show that $Y=X$.
(9) Suppose that $X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m}$ are closed irreducible subsets of X such that:

$$
X_{1} \cup \ldots \cup X_{n}=Y_{1} \cup \ldots \cup Y_{m}
$$

and for all $k \neq l$, we have $X_{k} \nsubseteq X_{l}$ and $Y_{k} \nsubseteq Y_{l}$. Show that $n=m$ and that there is $\sigma \in S_{n}$ such that

$$
X_{1}=Y_{\sigma(1)}, \ldots, X_{n}=Y_{\sigma(n)} .
$$

(10) Suppose that $X=X_{1} \cup \ldots \cup X_{k}$, where X_{1}, \ldots, X_{k} are closed substes of X. Show that:

$$
\operatorname{dim}(X)=\max \left(\operatorname{dim}\left(X_{1}\right), \ldots, \operatorname{dim}\left(X_{k}\right)\right)
$$

(11) Show that the Zariski topology on $\mathbb{A}^{2}=\mathbb{A}^{1} \times \mathbb{A}^{1}$ differs from the product topology (coming from the Zariski topology on \mathbb{A}^{1}).
(12) Let k be an infinite field and $F, G \in k\left[X_{1}, \ldots, X_{n}\right]$. Show that if F and G define the same polynomial functions from k^{n} to k, then $F=G$. Find a counterexample for k being the finite field of two elements.
(13) Assume $K=\mathbb{C}$. Find $F \in \mathbb{R}[X, Y]$ which is irreducible (in the ring $\mathbb{R}[X, Y]$) such that $V(F) \cap \mathbb{R}^{2}$ is non-empty and not irreducible (with the topology induced from $\mathbb{A}^{2}=\mathbb{C}^{2}$).
(14) Assume that X is irreducible and $U \subseteq X$ is open and non-empty. Show that U is dense in X.
(15) Assume that $V_{i} \subseteq \mathbb{A}^{n}$ and $A, A_{i} \subseteq K\left[X_{1}, \ldots, X_{n}\right]$ for $i \in I$. Show the following:
(a) $V\left(\bigcup_{i \in I} A_{i}\right)=\bigcap_{i \in I} V\left(A_{i}\right)$;
(b) $V(A)=V((A))\left((A)\right.$ is the ideal in $K\left[X_{1}, \ldots, X_{n}\right]$ generated by $\left.A\right)$;
(c) $I\left(\bigcup_{i \in I} V_{i}\right)=\bigcap_{i \in I} I\left(V_{i}\right)$;
(d) $A \subseteq I(V(A))$.
(16) Show that each plane curve V is an affine curve (that is: $\operatorname{dim}(V)=1$).
(17) Let

$$
V=\left\{\left(t, t^{2}, t^{3}\right) \in \mathbb{A}^{3} \mid t \in K\right\} .
$$

Show that V is an affine curve.
(18) Let

$$
V=V\left(X^{2}-Y Z, X Z-X\right) \subset \mathbb{A}^{3} .
$$

Describe the decomposition of V into irreducible components.
(19) Show that if $W \subset \mathbb{A}^{n}$ is finite, then $K[W]=\operatorname{Func}(W, K)$.
(20) Let $V=V(Y X-1) \subset \mathbb{A}^{2}$. Show that the K-algebras $K[V]$ and $K\left[\mathbb{A}^{1}\right]$ are not isomorphic (even as rings!).
(21) Let $F \in K[X, Y]$ be irreducible and of degree 2 . Show that the K-algebra $K[X, Y] /(F)$ is isomorphic with $K[X, 1 / X]$ or with $K[X]$.
(22) Let $V=V\left(Y^{2}-X^{3}\right)$. Show that $K[V]$ is not UFD.
(23) Let R be PID which is not a field. Show that $\operatorname{dim}(R)=1$.

