Geometria algebraiczna, Problem List 1

Let X be a non-empty topological space, V be an affine variety, $n \in \mathbb{N}_{>0}$, K be an algebraically closed field and $\mathbb{A}^n = K^n$.

- (1) Show that if X is Noetherian, then X is quasi-compact, i.e. every open covering of X contains a finite open subcovering of X.
- (2) Show that if $Y \subseteq X$, then $\dim(Y) \leq \dim(X)$, where Y has the subspace topology.
- (3) Give an example of X such that X is Noetherian and $\dim(X) = \infty$.
- (4) Show that X is Hausdorff and Noetherian if and only if X is finite with the discrete topology.
- (5) Show that if X is irreducible and Hausdorff, then |X| = 1.
- (6) Let $Y \subseteq X$. Show that Y is irreducible (as a topological space with the topology induced from X) if and only if the closure of Y is irreducible.
- (7) Show that if X is Noetherian and T_1 (singletons are closed), then

 $\dim(X) = 0$ if and only if X is finite.

- (8) Suppose that X is irreducible, $Y \subseteq X$ is closed and $\dim(Y) = \dim(X) < \infty$. Show that Y = X.
- (9) Suppose that $X_1, \ldots, X_n, Y_1, \ldots, Y_m$ are closed irreducible subsets of X such that:

$$X_1 \cup \ldots \cup X_n = Y_1 \cup \ldots \cup Y_m$$

and for all $k \neq l$, we have $X_k \not\subseteq X_l$ and $Y_k \not\subseteq Y_l$. Show that n = m and that there is $\sigma \in S_n$ such that

$$X_1 = Y_{\sigma(1)}, \dots, X_n = Y_{\sigma(n)}.$$

(10) Suppose that $X = X_1 \cup \ldots \cup X_k$, where X_1, \ldots, X_k are closed substes of X. Show that:

$$\dim(X) = \max\left(\dim(X_1), \ldots, \dim(X_k)\right).$$

- (11) Show that the Zariski topology on $\mathbb{A}^2 = \mathbb{A}^1 \times \mathbb{A}^1$ differs from the product topology (coming from the Zariski topology on \mathbb{A}^1).
- (12) Let k be an infinite field and $F, G \in k[X_1, \ldots, X_n]$. Show that if F and G define the same polynomial functions from k^n to k, then F = G. Find a counterexample for k being the finite field of two elements.
- (13) Assume $K = \mathbb{C}$. Find $F \in \mathbb{R}[X, Y]$ which is irreducible (in the ring $\mathbb{R}[X, Y]$) such that $V(F) \cap \mathbb{R}^2$ is non-empty and not irreducible (with the topology induced from $\mathbb{A}^2 = \mathbb{C}^2$).
- (14) Assume that X is irreducible and $U \subseteq X$ is open and non-empty. Show that U is dense in X.

- (15) Assume that $V_i \subseteq \mathbb{A}^n$ and $A, A_i \subseteq K[X_1, \ldots, X_n]$ for $i \in I$. Show the following:

 - (a) $V(\bigcup_{i \in I} A_i) = \bigcap_{i \in I} V(A_i);$ (b) V(A) = V((A)) ((A) is the ideal in $K[X_1, \dots, X_n]$ generated by A);
 - (c) $I(\bigcup_{i\in I} V_i) = \bigcap_{i\in I} I(V_i);$
 - (d) $A \subseteq I(V(A))$.
- (16) Show that each plane curve V is an affine curve (that is: $\dim(V) = 1$). (17) Let

$$V = \{ (t, t^2, t^3) \in \mathbb{A}^3 \mid t \in K \}.$$

Show that V is an affine curve.

(18) Let

$$V = V(X^2 - YZ, XZ - X) \subset \mathbb{A}^3.$$

Describe the decomposition of V into irreducible components.

- (19) Show that if $W \subset \mathbb{A}^n$ is finite, then $K[W] = \operatorname{Func}(W, K)$.
- (20) Let $V = V(YX 1) \subset \mathbb{A}^2$. Show that the K-algebras K[V] and $K[\mathbb{A}^1]$ are not isomorphic (even as rings!).
- (21) Let $F \in K[X,Y]$ be irreducible and of degree 2. Show that the K-algebra K[X,Y]/(F) is isomorphic with K[X,1/X] or with K[X].
- (22) Let $V = V(Y^2 X^3)$. Show that K[V] is not UFD.
- (23) Let R be PID which is not a field. Show that $\dim(R) = 1$.