Geometria algebraiczna, Problem List 11

Let K be an algebraically closed field and $n \in \mathbb{N}$.
(1) Let $x=[a: b: 1] \in \mathbb{P}^{2}$ and L be a line in \mathbb{P}^{2} such that $x,[0: 1: 0] \in L$. Show that the affine line $L_{*}=L \cap \mathbb{A}^{2}$ is parallel to the y-axis.
(2) Assume that $K=\mathbb{C}$. Show that $\mathbb{P}^{n}=\mathbb{P}^{n}(\mathbb{C})$ is compact in the Euclidean topology.
(3) Let $V \subseteq \mathbb{A}^{n}$ be an infinite Zariski closed subset. Show that $V^{*} \neq V$, where $V^{*} \subseteq \mathbb{P}^{n}$ is the homogenization of V.
(4) Let $A, B \in K$. We define:

$$
E:=V\left(Y^{2}-X^{3}-A X-B\right) \subseteq \mathbb{A}^{2}
$$

Show the following.
(a) The curve E has a unique point at infinity and this point is smooth.
(b) If $\operatorname{char}(K) \notin\{2,3\}$, then E has at most one singular point.
(c) If $\operatorname{char}(K) \notin\{2,3\}$, then E is smooth if and only if $4 A^{3}+16 B^{2} \neq 0$.
(5) Let A, B, E be as in Problem (4) above. Assume that E^{*} is smooth and let us consider the elliptic curve (E^{*}, O), where O is the point at infinity of E. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in E$ be two distinct points of E such that:

$$
\left(x_{3}, y_{3}\right):=\left(x_{1}, y_{1}\right) \oplus\left(x_{2}, y_{2}\right) \in E .
$$

Show that:

$$
x_{3}=\lambda^{2}+a_{1} \lambda-a_{2}-x_{1}-x_{2}, \quad y_{3}=-\left(\lambda+a_{1}\right) x_{3}-\nu-a_{3},
$$

where the equation

$$
Y=\lambda X+\nu
$$

defines the line in \mathbb{A}^{2} passing through points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$.
(6) Let $K=\mathbb{C}$ and

$$
E:=V\left(Y^{2}-X^{3}-17\right) \subseteq \mathbb{A}^{2}
$$

Let $\left(E^{*}, O\right)$ be an elliptic curve as in Problem (5) above. Check that:

$$
P_{1}:=(-2,3), P_{2}:=(-1,4), P_{3}=(2,5) \in E
$$

and compute the coordinates of the following points $(\oplus$ is the addition and \ominus is the subtraction on the elliptic curve $\left.\left(E^{*}, O\right)\right)$:
(a) $P_{1} \ominus P_{3}$;
(b) $P_{2} \oplus P_{2}$;
(c) $P_{2} \oplus P_{3}$.
(7) Let p be a prime number and

$$
E_{p}:=V\left(Y^{2}-X^{3}-17\right) \subseteq \mathbb{A}^{2}\left(\mathbb{F}_{p}^{\mathrm{alg}}\right),
$$

where $\mathbb{F}_{p}^{\text {alg }}$ is the algebraic closure of \mathbb{F}_{p}. For which prime numbers p, the affine curve E_{p} is smooth?

