Geometria algebraiczna, Problem List 10

Let K be an algebraically closed field and C be a smooth plane curve given by a homogenous polynomial $T \in K[X, Y, Z]$. Let $F, G \in K[X, Y, Z]$ be homogenous polynomials such that each of them has finitely many zeroes on C and all these zeroes are contained in $C_{*}:=C \cap \mathbb{A}^{2}$. Recall that:

$$
F_{*}:=\left.F\right|_{Z=1} .
$$

(1) For $x \in C_{*}$, we say that the Noether's condition holds for C, F, G if:

$$
F_{*} \in\left(T_{*}, G_{*}\right) K[X, Y]_{I(x)} .
$$

We assume that Noether's condition holds for each $x \in C$ such that $G(x)=0$. Show the following.
(a) There are $a, b \in K[X, Y]$ such that $F_{*}=a T_{*}+b G_{*}$.

Hint: use the following fact, which appeared in the proof of Proposition 2.56 and which says that if $I \triangleleft K[X, Y]$ and

$$
V(I)=\left\{x_{1}, \ldots, x_{n}\right\}
$$

is finite, then we have:
$K[X, Y] / I \cong_{K} K[X, Y]_{I\left(x_{1}\right)} / I K[X, Y]_{I\left(x_{1}\right)} \times \ldots \times K[X, Y]_{I\left(x_{n}\right)} / I K[X, Y]_{I\left(x_{n}\right)}$.
(b) There are $r \in \mathbb{N}$ and $a^{\prime}, b^{\prime} \in K[X, Y, Z]$ such that

$$
Z^{r} F=a^{\prime} T+b^{\prime} G .
$$

Hint: use Problem 9.8
(c) There are $a^{\prime \prime}, b^{\prime \prime} \in K[X, Y, Z]$ such that

$$
F=a^{\prime \prime} T+b^{\prime \prime} G
$$

Hint: use the fact that a certain K-linear function from the proof of Bézout's theorem is one-to-one.
(d) There are $A, B \in K[X, Y, Z]$ homogenous and such that $F=A T+B G$ and moreover:

$$
\operatorname{deg}(A)=\operatorname{deg}(F)-\operatorname{deg}(T), \operatorname{deg}(B)=\operatorname{deg}(F)-\operatorname{deg}(G) .
$$

Item (d) above is called the $A F+B G$ Theorem or Max Noether's Fundamental Theorem (we use " T " instead of " F " in the statement).
(2) Assume that:

$$
I(x, C \cap F) \geqslant I(x, C \cap G)
$$

Show that Noether's condition is satisfied by C, F, G and x.
(3) Assume that $A \in K[X, Y, Z]$ is homogenous and

$$
\operatorname{deg}(A)=\operatorname{deg}(G)-\operatorname{deg}(T)
$$

Show that:

$$
T \cdot(G+A T)=T \cdot G
$$

(4) Show that if for each $x \in C$ we have

$$
I(x, C \cap F) \geqslant I(x, C \cap G),
$$

tthen there is a homogenous polynomial $H \in K[X, Y, Z]$ such that:

$$
C \cdot F=C \cdot G+C \cdot H
$$

which is an equality in the group $\operatorname{Div}(C)$.

