## ALGEBRA 1R, Problem List 9

Let $n \in \mathbb{N}_{>0}$ and let $G$ be a group.
(1) Show that:

$$
Q_{8}^{\prime}=\{I,-I\} .
$$

(2) Show that (you cannot use that for $n \geqslant 5$, the group $A_{n}$ is simple!):
(a) For $n \geqslant 1$, we have:

$$
\left(S_{n}\right)^{\prime}=A_{n} .
$$

(b) For $n \geqslant 5$, we have

$$
\left(A_{n}\right)^{\prime}=A_{n} .
$$

(Hint: For $n \geqslant 3$, the group $A_{n}$ is generated by the set of all 3-cycles.)
(3) Show that if $|G|=p q^{2}$, where $p$ and $q$ are prime numbers, then $G$ is solvable.
(4) Show that if $|G|=200$, then $G$ is solvable.
(5) Show that if $|G|<60$, then $G$ is solvable.
(6) Find the largest number $n \in \mathbb{N}$, for which you can show that for any odd number $m<n$ : if $|G|=m$, then $G$ is solvable.
(This is a competition!)
(7) How many elements of order 7 are in a simple group of order 168 ?
(8) Show that the group $(\mathbb{Q},+)$ does not have:
(a) a normal sequence with cyclic factors,
(b) a composition sequence.
(9) Find a composition sequence of the group $\mathbb{Z}_{n}$.
(10) Watch the following video about a certain simple group (not the Monster): http://www. youtube.com/watch?v=UTby_e4-Rhg.
(11) Show that if $B$ is a set of free generators of $G$, then $\langle B\rangle=G$.
(You can use only the definition of a set of free generators!)
(12) Show that:

$$
S_{3} \cong\left\langle x, y \mid x^{2}=y^{3}=x y x y=1\right\rangle .
$$

(13) Show that:

$$
D_{n} \cong\left\langle x, y \mid x^{2}=y^{n}=x y x y=1\right\rangle .
$$

This is the link for Earliest Known Uses of Some of the Words of Mathematics: https://mathshistory.st-andrews.ac.uk/Miller/mathword/.

