ALGEBRA 1R, Problem List 8

Let $(A,+)$ be a commutative group and p be a prime number.
(1) Assume that A is a subgroup of \mathbb{Z}. Show that $A=\{0\}$ or $A \cong \mathbb{Z}$.
(2) Find the product of cyclic groups which is isomorphic to the following group:

$$
\mathbb{Z}^{3} /\langle(10,11,8),(4,7,4),(4,4,4)\rangle
$$

(3) Assume that $a_{1}, b_{1}, \ldots, a_{k}, b_{k} \in \mathbb{N}$ and we have:

$$
\mathbb{Z}_{p}^{a_{1}} \times \mathbb{Z}_{p^{2}}^{a_{2}} \times \ldots \times \mathbb{Z}_{p^{k}}^{a_{k}} \cong \mathbb{Z}_{p}^{b_{1}} \times \mathbb{Z}_{p^{2}}^{b_{2}} \times \ldots \times \mathbb{Z}_{p^{k}}^{b_{k}} .
$$

Show that:

$$
a_{1}=b_{1}, \ldots, a_{k}=b_{k} .
$$

(Recall that $G^{0}=\{e\}$.)
(4) Check whether the following groups are isomorphic:
(a) $\mathbb{Z}_{24} \times \mathbb{Z}_{36}$ and $\mathbb{Z}_{48} \times \mathbb{Z}_{18}$,
(b) $\mathbb{Z}_{21} \times \mathbb{Z}_{40}$ and $\mathbb{Z}_{168} \times \mathbb{Z}_{5}$,
(c) $\mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5} \times \mathbb{Z}_{7}$ and \mathbb{Z}_{315}.
(5) Assume that G is a finite group such that for all $g \in G$, we have $g^{2}=e$. Show that there is $l \in \mathbb{N}$ such that:

$$
G \cong\left(\mathbb{Z}_{2}\right)^{l} .
$$

(6) Assume that $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and that $\left\{b_{1}, \ldots, b_{m}\right\} \subset A$ consists of all elements of A of order 2 .
(a) Show the following:

$$
a_{1}+\ldots+a_{n}=b_{1}+\ldots+b_{m}
$$

(If $m=0$, then we define the right-hand side above as 0 .)
(b) Show that $p-1$ is a unique element of order 2 in the group \mathbb{Z}_{p}^{*}.
(c) Conclude Wilson's Theorem.
(7) Assume that $|A|=n$ (A is still commutative!) and $k \mid n$. Show that there is $H \leqslant A$ such that $|H|=k$.

