ALGEBRA 1R, Problem List 7

Let H, G be groups and p, q be prime numbers.
(1) Let $H_{1} \preccurlyeq H, G_{1} \preccurlyeq G$. Show that $H_{1} \times G_{1} \boxtimes H \times G$ and (using the fundamental theorem on group homomorphisms) that:

$$
(H \times G) /\left(H_{1} \times G_{1}\right) \cong\left(H / H_{1}\right) \times\left(G / G_{1}\right) .
$$

(2) Let $\varphi: G \rightarrow \operatorname{Aut}(H)$ be an action. Show that the following conditions are equivalent.
(a) The group $H \rtimes_{\varphi} G$ is commutative.
(b) The groups H, G are commutative and the action φ is trivial.
(3) Let $\Psi: G \rightarrow H$ be an epimorphism. Assume that there is a section of Ψ, that is a homomorphism $s: H \rightarrow G$ such that $\Psi \circ s=\operatorname{id}_{H}$. Show that:

$$
G \cong \operatorname{ker}(\Psi) \rtimes H .
$$

(4) Assume that $|G|=p q$ and $p<q$. Show the following.
(a) We have:

$$
G \cong \mathbb{Z}_{q} \rtimes \mathbb{Z}_{p} .
$$

(b) If p does not divide $q-1$, then we have:

$$
G \cong \mathbb{Z}_{p q} .
$$

(c) If p divides $q-1$, then there is a non-commutative group of order $p q$.
(5) Classify (up to an isomorphism) all groups of order smaller than 12.
(6) Assume that H is a unique Sylow p-subgroup of G. Show that $H \preccurlyeq G$.
(7) Assume that H is a p-subgroup of G and that H is a normal subgroup. Show that H is contained in each Sylow p-subgroup of G.
(8) Assume that $|G|=196$. Show that G has a normal subgroup of order 49.
(9) Assume that $|G|=36$. Show that there is $N \geqq G$ such that $N \neq\{e\}$ and $N \neq G$.
(10) Find all Sylow p-subgroups of S_{p}. Conclude the following (Wilson's Theorem):

$$
(p-1)!\equiv-1(\bmod p) .
$$

(11) Show that there is a monomorphism

$$
D_{4} \longrightarrow S_{4} .
$$

(12) Show that there is no monomorphism

$$
Q_{8} \longrightarrow S_{4} .
$$

(13) Describe all Sylow p-subgroups of S_{4} for all prime numbers p.

