ALGEBRA 1R, Problem List 6

Let G be a group and $n \in \mathbb{N}_{>1}$.

(1) Let $g \in G$ be of order n. Show that for each $m \in \mathbb{Z}$, we have:

 $g^m = e$ if and only if n|m.

- (2) Let N ≤ G. Show that the following conditions are equivalent.
 (a) N ≤ G.
 - (b) For each $g \in G$, we have $gNg^{-1} = N$.
 - (c) For each $g \in G$ and for each $n \in N$, we have $gng^{-1} \in N$.
- (3) Let $g \in G$ be of order 2. Show that the following conditions are equivalent: (a) $g \in Z(G)$,
 - (b) $\{e,g\} \leq G$.
- (4) Let $g \in G$ be a unique element of order 2 in G. Show that $g \in Z(G)$.
- (5) Using the fundamental theorem on group homomorphisms, show the following.
 - (a) We have:

$$(\mathbb{R}^*, \cdot)/\{1, -1\} \cong (\mathbb{R}_{>0}, \cdot),$$

(b) We have:

$$(\mathbb{C},+)/\mathbb{Z}\cong(\mathbb{C}^*,\cdot),$$

(c) We have:

$$(\mathbb{C}^*, \cdot)/\langle e^{\frac{2\pi i}{n}}\rangle \cong (\mathbb{C}^*, \cdot)$$

(6) Let p be a prime number and assume that $|G| = p^2$. Show that:

$$G \cong \mathbb{Z}_{p^2}$$
 or $G \cong \mathbb{Z}_p \times \mathbb{Z}_p$.

(7) Let $\varphi : \mathbb{Z}_2 \to \operatorname{Aut}(\mathbb{Z}_n)$ be the group action from Problem 2 of List 5. Show that:

$$D_n \cong \mathbb{Z}_n \rtimes_{\varphi} \mathbb{Z}_2$$

(8) Show that:

$$A_4 \cong (\mathbb{Z}_2 \times \mathbb{Z}_2) \rtimes \mathbb{Z}_3.$$

(9) Let G be the subset of $S_{\mathbb{R}}$ containing of *affine* bijections, that is maps of the form:

$$\mathbb{R} \ni x \mapsto ax + b \in \mathbb{R}.$$

Show the following.

- (a) $G \leq S_{\mathbb{R}}$.
- (b) We have:

$$G \cong (\mathbb{R}, +) \rtimes (\mathbb{R}^*, \cdot).$$

- (10) Formulate and show a generalization of the statement in the previous problem from the case of \mathbb{R} to the case of \mathbb{R}^n .
- (11) Show that A_4 has no subgroup of order 6.