ALGEBRA 1R, Problem List 6

Let G be a group and $n \in \mathbb{N}_{>1}$.
(1) Let $g \in G$ be of order n. Show that for each $m \in \mathbb{Z}$, we have:

$$
g^{m}=e \quad \text { if and only if } \quad n \mid m
$$

(2) Let $N \leqslant G$. Show that the following conditions are equivalent.
(a) $N \preccurlyeq G$.
(b) For each $g \in G$, we have $g N g^{-1}=N$.
(c) For each $g \in G$ and for each $n \in N$, we have $g n g^{-1} \in N$.
(3) Let $g \in G$ be of order 2. Show that the following conditions are equivalent:
(a) $g \in Z(G)$,
(b) $\{e, g\} \preccurlyeq G$.
(4) Let $g \in G$ be a unique element of order 2 in G. Show that $g \in Z(G)$.
(5) Using the fundamental theorem on group homomorphisms, show the following.
(a) We have:

$$
\left(\mathbb{R}^{*}, \cdot\right) /\{1,-1\} \cong\left(\mathbb{R}_{>0}, \cdot\right)
$$

(b) We have:

$$
(\mathbb{C},+) / \mathbb{Z} \cong\left(\mathbb{C}^{*}, \cdot\right)
$$

(c) We have:

$$
\left(\mathbb{C}^{*}, \cdot\right) /\left\langle e^{\frac{2 \pi i}{n}}\right\rangle \cong\left(\mathbb{C}^{*}, \cdot\right)
$$

(6) Let p be a prime number and assume that $|G|=p^{2}$. Show that:

$$
G \cong \mathbb{Z}_{p^{2}} \quad \text { or } \quad G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p}
$$

(7) Let $\varphi: \mathbb{Z}_{2} \rightarrow \operatorname{Aut}\left(\mathbb{Z}_{n}\right)$ be the group action from Problem 2 of List 5 . Show that:

$$
D_{n} \cong \mathbb{Z}_{n} \rtimes_{\varphi} \mathbb{Z}_{2}
$$

(8) Show that:

$$
A_{4} \cong\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{3} .
$$

(9) Let G be the subset of $S_{\mathbb{R}}$ containing of affine bijections, that is maps of the form:

$$
\mathbb{R} \ni x \mapsto a x+b \in \mathbb{R} .
$$

Show the following.
(a) $G \leqslant S_{\mathrm{R}}$.
(b) We have:

$$
G \cong(\mathbb{R},+) \rtimes\left(\mathbb{R}^{*}, \cdot\right) .
$$

(10) Formulate and show a generalization of the statement in the previous problem from the case of \mathbb{R} to the case of \mathbb{R}^{n}.
(11) Show that A_{4} has no subgroup of order 6 .

