ALGEBRA 1R, Problem List 5

Let G be a group and $n \in \mathbb{N}_{>0}$.

- (1) Describe the orbits of the natural action of $GL_n(\mathbb{R})$ on \mathbb{R}^n .
- (2) Let (A, +) be a commutative group.
 - (a) Show that the following formula:

 $\forall a \in A \qquad 0 \cdot a = a, \ 1 \cdot a = -a$

- gives an action of \mathbb{Z}_2 on A by automorphisms.
- (b) Describe the homomorphism

$$\Psi: \mathbb{Z}_2 \longrightarrow \operatorname{Aut}(A),$$

which corresponds to the action from Item (a) above.

- (c) For which groups A, the homomorphism Ψ from Item (b) above is a monomorphism?
- (3) Asume that there is $g \in G \setminus \{e\}$ such that $\operatorname{ord}(g) \neq 2$. Show that:

 $\operatorname{Aut}(G) \neq {\operatorname{id}}_G {\operatorname$

(4) Show that:

$$\operatorname{Aut}(\mathbb{Z}_2 \times \mathbb{Z}_2) \cong S_3.$$

- (5) Describe the center of S_3 and the center of D_4 .
- (6) For $n \ge 3$, describe the conjugacy class of (123) in S_n .
- (7) Describe all conjugacy classes in S_n .
- (8) Let $H \leq G$. Show that:

$$|G/H| = |H \backslash G|.$$

- (9) Show that all automorphims of S_3 are inner.
- (10) Show that if $H \leq G$ and [G:H] = 2, then $H \leq G$ (that is: for each $g \in G$, we have gH = Hg).
- (11) For n > 1, show that $T_n(\mathbb{R})$ is not a normal subgroup of $GL_n(\mathbb{R})$.
- (12) Give an example of G and $N \leq H \leq G$ such that $N \not\leq G$.