ALGEBRA 1R, Problem List 4

Let G be a group and $n \in \mathbb{N}_{>0}$.
(1) Show that if for all $g \in G$ we have $g^{2}=e$, then G is commutative.
(2) Show that if $\sigma, \tau \in S_{n}$ are disjoint, then

$$
\sigma \circ \tau=\tau \circ \sigma, \quad X_{\sigma \circ \tau}=X_{\sigma} \cup X_{\tau}
$$

where X_{σ} denotes the support of the permutation σ.
(3) Show that if $n \geqslant 2$, then we have:

$$
S_{n}=\langle(12),(12 \ldots n)\rangle
$$

(4) Show that if $n \geqslant 3$, then we have:

$$
A_{n}=\left\langle\left\{\sigma \in S_{n} \mid \sigma \text { is a cycle of length } 3\right\}\right\rangle .
$$

(5) Show that:

$$
\left(\mathbb{Z}_{2},+_{2}\right) \times\left(\mathbb{Z}_{3},+_{3}\right) \cong\left(\mathbb{Z}_{6},+_{6}\right) .
$$

How to generalize this result?
(6) Show that:

$$
\begin{aligned}
& (\mathbb{Z},+) \times(\mathbb{Z},+) \nsucceq(\mathbb{Z},+), \\
& (\mathbb{Q},+) \times(\mathbb{Q},+) \nsubseteq(\mathbb{Q},+) .
\end{aligned}
$$

(7) Show that:
(a) For each $k \in \mathbb{Z}_{n}$, the function

$$
\phi_{k}:\left(\mathbb{Z}_{n},+_{n}\right) \rightarrow\left(\mathbb{Z}_{n},+_{n}\right), \quad \phi_{k}(x)=k \cdot_{n} x
$$

is an endomorphism.
(b) If

$$
\phi:\left(\mathbb{Z}_{n},+_{n}\right) \rightarrow\left(\mathbb{Z}_{n},+_{n}\right)
$$

is an endomorphism, then there is $k \in \mathbb{Z}_{n}$ such that $\phi=\phi_{k}$.
(c) If $k, l \in \mathbb{Z}_{n}$, then

$$
\phi_{k} \circ \phi_{l}=\phi_{k \cdot n l} .
$$

(d) If $k \in \mathbb{Z}_{n}^{*}$, then $\phi_{k} \in \operatorname{Aut}\left(\mathbb{Z}_{n},+_{n}\right)$.
(e) The function

$$
\Phi: \mathbb{Z}_{n}^{*} \rightarrow \operatorname{Aut}\left(\mathbb{Z}_{n},+_{n}\right), \quad \Phi(k)=\phi_{k}
$$

is an isomorphism.

