ALGEBRA 1R, Problem List 3

Let G and H be groups and $n \in \mathbb{N}_{>0}$.

- (1) Show that if H < G and G is cyclic, then H is cyclic.
- (2) Assume that H_1 and H_2 are subgroups of G. Show that $H_1 \cup H_2$ is a subgroup of G if and only if $H_1 \subseteq H_2$ or $H_2 \subseteq H_1$.
- (3) Is H a subgroup of G in the following cases?
 - (a) $G = (\mathbb{Z}_8^*, \cdot_8), H = \{1, 3\}.$
 - (b) $G = (\mathbb{Z}_4, +_4), H = \{0, 3\}.$
 - (c) $G = (\mathbb{Z}_6, +_6), H = \{0, 3\}.$
 - (d) $G = D_4$ and H contains of all axial symmetries and the identity.
- (4) Let $f: G \to H$ be a homomorphism, $G_1 \leq G$, and $H_1 \leq H$. Show that $f(G_1) \leq H$ and $f^{-1}(H_1) \leq G$.
- (5) Show that the function

$$f: G \to G, \quad f(g) = g^2$$

is a homomorphism if and only if G is commutative.

(6) Let $g \in G$. We declare that $\min(\emptyset) = \infty$. Show that:

$$\operatorname{ord}(g) = \min\{k \in \mathbb{N}_{>0} \mid g^k = 1\}.$$

(7) Assume that f: G → H is a homomorphism, g ∈ G, and show the following.
(a) If ord_G(g) is finite, then ord_H(f(g)) is finite and

$$\operatorname{ord}_H(f(g))|\operatorname{ord}_G(g).$$

(b) If f is a monomorphism, then we have:

$$\operatorname{ord}_G(g) = \operatorname{ord}_H(f(g)).$$

- (8) Assume that $G = \langle g \rangle$ is a cyclic group, H is an arbitrary group, and $h \in H$. Show the following.
 - (a) If $\operatorname{ord}_G(g)$ is infinite, then there is a unique homomorphism $f: G \to H$ such that f(g) = h.
 - (b) If $\operatorname{ord}_G(g)$ is finite, $\operatorname{ord}_H(h)$ is finite, and $\operatorname{ord}_H(h)|\operatorname{ord}_G(g)$, then there is a unique homomorphism $f: G \to H$ such that f(g) = h.
- (9) Show that there is no monomorphism

$$(\mathbb{Z}_3,+_3) \to (\mathbb{R} \setminus \{0\},\cdot).$$

- (10) Show that $D_6 \ncong A_4$.
- (11) Show that $S^1 \cong SO_2(\mathbb{R})$.
- (12) Find a monomorphism

$$(\mathbb{Z}_n, +_n) \to (\mathbb{C} \setminus \{0\}, \cdot).$$

(13) Find a monomorphism

$$S_n \to \mathrm{GL}_n(\mathbb{Q}).$$

- (14) Find all homomorphisms $f: G \to H$ in the following cases.
 - (a) $G = (\mathbb{Z}_{15}, +_{15}), H = (\mathbb{Z}_4, +_4).$
 - (b) $G = (\mathbb{Z}_6, +_6), H = (\mathbb{Z}_4, +_4).$

(c)
$$G = (\mathbb{Z}, +), H = (\mathbb{Q}, +).$$

(15) Show that the group $(\mathbb{Q}, +)$ is not finitely generated.