ALGEBRA 1R, Problem List 3

Let G and H be groups and $n \in \mathbb{N}_{>0}$.
(1) Show that if $H<G$ and G is cyclic, then H is cyclic.
(2) Assume that H_{1} and H_{2} are subgroups of G. Show that $H_{1} \cup H_{2}$ is a subgroup of G if and only if $H_{1} \subseteq H_{2}$ or $H_{2} \subseteq H_{1}$.
(3) Is H a subgroup of G in the following cases?
(a) $G=\left(\mathbb{Z}_{8}^{*}, \cdot 8\right), H=\{1,3\}$.
(b) $G=\left(\mathbb{Z}_{4},+_{4}\right), H=\{0,3\}$.
(c) $G=\left(\mathbb{Z}_{6},+_{6}\right), H=\{0,3\}$.
(d) $G=D_{4}$ and H contains of all axial symmetries and the identity.
(4) Let $f: G \rightarrow H$ be a homomorphism, $G_{1} \leqslant G$, and $H_{1} \leqslant H$. Show that $f\left(G_{1}\right) \leqslant H$ and $f^{-1}\left(H_{1}\right) \leqslant G$.
(5) Show that the function

$$
f: G \rightarrow G, \quad f(g)=g^{2}
$$

is a homomorphism if and only if G is commutative.
(6) Let $g \in G$. We declare that $\min (\emptyset)=\infty$. Show that:

$$
\operatorname{ord}(g)=\min \left\{k \in \mathbb{N}_{>0} \mid g^{k}=1\right\}
$$

(7) Assume that $f: G \rightarrow H$ is a homomorphism, $g \in G$, and show the following.
(a) If $\operatorname{ord}_{G}(g)$ is finite, then $\operatorname{ord}_{H}(f(g))$ is finite and

$$
\operatorname{ord}_{H}(f(g)) \mid \operatorname{ord}_{G}(g) .
$$

(b) If f is a monomorphism, then we have:

$$
\operatorname{ord}_{G}(g)=\operatorname{ord}_{H}(f(g)) .
$$

(8) Assume that $G=\langle g\rangle$ is a cyclic group, H is an arbitrary group, and $h \in H$. Show the following.
(a) If $\operatorname{ord}_{G}(g)$ is infinite, then there is a unique homomorphism $f: G \rightarrow H$ such that $f(g)=h$.
(b) If $\operatorname{ord}_{G}(g)$ is finite, $\operatorname{ord}_{H}(h)$ is finite, and $\operatorname{ord}_{H}(h) \mid \operatorname{ord}_{G}(g)$, then there is a unique homomorphism $f: G \rightarrow H$ such that $f(g)=h$.
(9) Show that there is no monomorphism

$$
\left(\mathbb{Z}_{3},+_{3}\right) \rightarrow(\mathbb{R} \backslash\{0\}, \cdot)
$$

(10) Show that $D_{6} \nexists A_{4}$.
(11) Show that $S^{1} \cong \mathrm{SO}_{2}(\mathbb{R})$.
(12) Find a monomorphism

$$
\left(\mathbb{Z}_{n},+_{n}\right) \rightarrow(\mathbb{C} \backslash\{0\}, \cdot)
$$

(13) Find a monomorphism

$$
S_{n} \rightarrow \mathrm{GL}_{n}(\mathbb{Q})
$$

(14) Find all homomorphisms $f: G \rightarrow H$ in the following cases.
(a) $G=\left(\mathbb{Z}_{15},+_{15}\right), H=\left(\mathbb{Z}_{4},+_{4}\right)$.
(b) $G=\left(\mathbb{Z}_{6},+_{6}\right), H=\left(\mathbb{Z}_{4},+_{4}\right)$.
(c) $G=(\mathbb{Z},+), H=(\mathbb{Q},+)$.
(15) Show that the group $(\mathrm{Q},+)$ is not finitely generated.

