ALGEBRA 1R, Problem List 1

Special Problem Session 12.10.2022 (Wednesday), 12:15-14:00.
For a set $X, \mathcal{P}(X)$ is the set of all subsets of X, and S_{X} is the set of all bijections $X \rightarrow X$.
(1) Give an example of an operation $*$ on the set $\{0,1\}$ such that

$$
0 *(0 * 0) \neq(0 * 0) * 0
$$

How many such operations $*$ are there (on this set $\{0,1\}$)?
(2) Assume that $*$ is an associative operation on a finite set A. Show that there is $a \in A$ such that $a * a=a$.
(3) Let $*$ be an operation on X and $a, b, c \in X$. Show that:
(a) If b and c are neutral elements of $*$, then $b=c$.
(b) If the operation $*$ is associative, $*$ has a neutral element $e, a * b=e$, and $c * a=e$, then $b=c$.
(c) If $(X, *)$ is a group with the neutral element e and $a * b=e$, then $b * a=e$.
(4) Let $f: X \rightarrow X$. Show that:
(a) The function f is onto if and only if there is a function $g: X \rightarrow X$ such that $f \circ g=\operatorname{id}_{X}$.
(b) The function f is one-to-one if and only if there is a function $h: X \rightarrow X$ such that $h \circ f=\mathrm{id}_{X}$.
(5) Let G be a transformation group on X. Show that $\mathrm{id}_{X} \in G$.
(6) Show that the operation + on the set $\mathbb{R} \cup\{\infty\}$ (defined during the lecture) is associative and has a neutral element, but $(\mathbb{R} \cup\{\infty\},+)$ is not a group.
(7) Show that if $|X|>1$, then $(X, \mathrm{~L})$ is not a group, where for $a, b \in X$ we have $a \mathrm{~L} b=a$.
(8) Show that if X is non-empty, then:
(a) $(\mathcal{P}(X), \cup)$ is not a group,
(b) $(\mathcal{P}(X), \cap)$ is not a group.
(9) Show that the group S_{X} is commutative if and only if $|X|<3$.
(10) Check whether the following operation $*$ on the following set A is associative, commutative and whether it has a neutral element. Check also whether $(A, *)$ is a group.
(a) $A=\mathbb{Q} \backslash\{0\} ; a * b=\frac{a}{b}$.
(b) $A=\mathbb{R} ; x * y=x+y+2$.
(c) $A=\mathbb{N}_{+} ; m * n=\operatorname{GCD}(m, n)$.
(d) $A=\mathbb{N}_{+} ; m * n=\operatorname{LCM}(m, n)$.
(e) A is the plane; $P * Q$ is the middle point of the interval with end-points P, Q.
(f) A is the plane; $P * Q$ is the image of the point P under the reflection across the point Q.

