ALGEBRA 1R, Problem List 1

Special Problem Session 12.10.2022 (Wednesday), 12:15–14:00.

For a set X, $\mathcal{P}(X)$ is the set of all subsets of X, and S_X is the set of all bijections $X \to X$.

(1) Give an example of an operation * on the set $\{0, 1\}$ such that

$$0 * (0 * 0) \neq (0 * 0) * 0.$$

How many such operations * are there (on this set $\{0,1\}$)?

- (2) Assume that * is an associative operation on a finite set A. Show that there is $a \in A$ such that a * a = a.
- (3) Let * be an operation on X and $a, b, c \in X$. Show that:
 - (a) If b and c are neutral elements of *, then b = c.
 - (b) If the operation * is associative, * has a neutral element e, a * b = e, and c * a = e, then b = c.
 - (c) If (X, *) is a group with the neutral element e and a * b = e, then b * a = e.
- (4) Let $f: X \to X$. Show that:
 - (a) The function f is onto if and only if there is a function $g: X \to X$ such that $f \circ g = \operatorname{id}_X$.
 - (b) The function f is one-to-one if and only if there is a function $h: X \to X$ such that $h \circ f = id_X$.
- (5) Let G be a transformation group on X. Show that $id_X \in G$.
- (6) Show that the operation + on the set $\mathbb{R} \cup \{\infty\}$ (defined during the lecture) is associative and has a neutral element, but $(\mathbb{R} \cup \{\infty\}, +)$ is not a group.
- (7) Show that if |X| > 1, then (X, L) is not a group, where for $a, b \in X$ we have aLb = a.
- (8) Show that if X is non-empty, then:
 - (a) $(\mathcal{P}(X), \cup)$ is not a group,
 - (b) $(\mathcal{P}(X), \cap)$ is not a group.
- (9) Show that the group S_X is commutative if and only if |X| < 3.
- (10) Check whether the following operation * on the following set A is associative, commutative and whether it has a neutral element. Check also whether (A, *) is a group.
 - (a) $A = \mathbb{Q} \setminus \{0\}; a * b = \frac{a}{b}$.
 - (b) $A = \mathbb{R}; x * y = x + y + 2.$
 - (c) $A = \mathbb{N}_+; m * n = \operatorname{GCD}(m, n).$
 - (d) $A = \mathbb{N}_+; m * n = \operatorname{LCM}(m, n).$
 - (e) A is the plane; P * Q is the middle point of the interval with end-points P, Q.
 - (f) A is the plane; P * Q is the image of the point P under the reflection across the point Q.