ALGEBRA 1R, Problem List 13

Let R and S be commutative rings with 1 .
(1) For each prime number p, we identify $\mathbb{Z}_{(p)}$ with the corresponding subring of \mathbb{Q}. Show the following:

$$
\bigcap_{p} \mathbb{Z}_{(p)}=\mathbb{Z}
$$

(2) Assume that R is UFD and let $f, g \in R[X]$. Show that if $\operatorname{cont}(f)=1$ and $\operatorname{cont}(g)=1$, then $\operatorname{cont}(f g)=1$.
Recall that we have:

$$
\operatorname{cont}\left(a_{0}+a_{1} X+\ldots+a_{n} X^{n}\right)=1
$$

if and only if there is no irreducible element $p \in R$ such that:

$$
p\left|a_{0}, p\right| a_{1}, \ldots, p \mid a_{n}
$$

(3) Show that $X^{p-1}+X^{p-2}+\cdots+X+1 \in \mathbb{Q}[X]$ is irreducible, where p is a prime number.
(4) Find a greatest common divisor and a least common multiple for:
(a) $X^{4}-X, X^{6}-X$ in $\mathbb{C}[X]$,
(b) $X^{4}-X, X^{6}-X$ in $\mathbb{C} \llbracket X \rrbracket$,
(c) $4-2 i, 13+i$ in $\mathbb{Z}[i]$,
(d) $13,12+5 i$ in $\mathbb{Z}[i]$,
(5) Let
$R:=\left\{a_{0}+2 a_{1} X+\ldots+2 a_{n} X^{n} \in \mathbb{Z}[X] \mid a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{Z} ; n \in \mathbb{N}\right\}$.
Show the following:
(a) R is a subring of $\mathbb{Z}[X]$;
(b) the ideal ($2 X$) $\cap\left(2 X^{2}\right)$ is not principal in R;
(c) the elements $2 X$ and $2 X^{2}$ have no least common multiple in R.
(6) Show that the following conditions are equivalent:
(a) There are R_{1}, R_{2}, non-zero rings with 1 such that

$$
R \cong R_{1} \times R_{2} .
$$

(b) There are $u_{1}, u_{2} \in R \backslash\{0\}$ such that

$$
u_{1}+u_{2}=1, \quad u_{1}^{2}=u_{1}, \quad u_{2}^{2}=u_{2} .
$$

(c) There is $u \in R \backslash\{0,1\}$, which is an idempotent, that is $u^{2}=u$.
(7) Show that

$$
(R \times S)^{*}=R^{*} \times S^{*},
$$

which is an equality of subsets of $R \times S$.
(8) Let $n \in \mathbb{N}$ and $n=p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}$, where $\alpha_{i} \in \mathbb{N}$ and p_{1}, \ldots, p_{k} are pairwise distinct prime numbers. Show the following:
(a) For $\alpha \in \mathbb{N}$ and a prime number p, we have:

$$
\left|\mathbb{Z}_{p^{\alpha}}^{*}\right|=p^{\alpha}-p^{\alpha-1}
$$

(b) We have:

$$
\left|\mathbb{Z}_{n}^{*}\right|=\left(p_{1}^{\alpha_{1}}-p_{1}^{\alpha_{1}-1}\right) \cdot \ldots \cdot\left(p_{k}^{\alpha_{k}}-p_{k}^{\alpha_{k}-1}\right) .
$$

(9) Show that:

$$
\mathbb{Q}[X, Y] /(X Y) \not \equiv \mathbb{Q}[X, Y] /(X) \times \mathbb{Q}[X, Y] /(Y)
$$

