ALGEBRA 1R, Problem List 12

Let R be a commutative ring with 1 and K be a field.
(1) Show that 3 is a reducible element and 5 is an irreducible element of the ring $\mathbb{Z}[\sqrt{-2}]$.
(2) Check whether the following element is irreducible in the ring R.
(a) $7+\sqrt{-5}, 2+3 \sqrt{-5}, 5+4 \sqrt{-5}$, where $R=\mathbb{Z}[\sqrt{-5}]$;
(b) $-1+7 i, 5,23,1+6 i$, where $R=\mathbb{Z}[i]$.
(3) Describe (up to being associated) all the irreducible elements in the ring $K \llbracket X \rrbracket$.
(4) Show that the ring $K\left[X^{2}, X^{3}\right]$ is not UFD.
(5) Show that the ring $\mathbb{Z}\left[\frac{1}{2}\right]$ is UFD.
(6) Let R be UFD and $a, b \in R$. Show that the ideal $(a) \cap(b)$ is principal.
(7) Let $p>2$ be a prime number. Show that the following conditions are equivalent:
(a) p is a reducible element in the ring $\mathbb{Z}[i]$,
(b) p is a sum of two squares of integer numbers,
(c) p is congruent to 1 modulo 4 .
(8) Show that among prime numbers there are infinitely many:
(a) irreducible elements of the ring $\mathbb{Z}[i]$,
(b) reducible elements of the ring $\mathbb{Z}[i]$.

