ALGEBRA 1R, Problem List 12

Let R be a commutative ring with 1 and K be a field.

- (1) Show that 3 is a reducible element and 5 is an irreducible element of the ring $\mathbb{Z}[\sqrt{-2}]$.
- (2) Check whether the following element is irreducible in the ring R. (a) $7 + \sqrt{-5}$, $2 + 3\sqrt{-5}$, $5 + 4\sqrt{-5}$, where $R = \mathbb{Z}[\sqrt{-5}]$; (b) -1 + 7i, 5, 23, 1 + 6i, where $R = \mathbb{Z}[i]$.
- (3) Describe (up to being associated) all the irreducible elements in the ring K[X].
- (4) Show that the ring $K[X^2, X^3]$ is not UFD.
- (5) Show that the ring $\mathbb{Z}[\frac{1}{2}]$ is UFD.
- (6) Let R be UFD and $a, b \in R$. Show that the ideal $(a) \cap (b)$ is principal.
- (7) Let p > 2 be a prime number. Show that the following conditions are equivalent:
 - (a) p is a reducible element in the ring $\mathbb{Z}[i]$,
 - (b) p is a sum of two squares of integer numbers,
 - (c) p is congruent to 1 modulo 4.
- (8) Show that among prime numbers there are infinitely many:
 - (a) irreducible elements of the ring $\mathbb{Z}[i]$,
 - (b) reducible elements of the ring $\mathbb{Z}[i]$.