ALGEBRA 1R, Problem List 11

Let R be a commutative ring with 1 and $n \in \mathbb{N}_{>0}$.
(1) Let $r_{1}, \ldots, r_{n} \in R$. Show that:

$$
\left(r_{1}, \ldots, r_{n}\right)=r_{1} R+\ldots+r_{n} R
$$

(2) Let $I \preccurlyeq R$ and

$$
\sqrt{I}:=\left\{a \in R:(\exists n \in \mathbb{N})\left(a^{n} \in I\right)\right\} .
$$

Show that $\sqrt{I} \preccurlyeq R$.
(3) Let $f: R \rightarrow S$ be a homomorphism of commutative rings with $1, I \boxtimes R$, and $J \preccurlyeq S$. Show the following:

- $f^{-1}(J) 太 R$.
- If f is an epimorphism, then $f(I) \boxtimes S$.
- Give an example of f, I such that $f(I) \notin S$.
(4) Find $f \in \mathbb{Q}[X]$ such that

$$
(f)=\left(X^{2}-1, X^{3}+1\right) .
$$

(5) Show that the ideal $(2, X) \boxtimes \mathbb{Z}[X]$ is not principal.
(6) Let $\phi: R \rightarrow S$ be an epimorphism of rings, where R is Noetherian. Show that S is Noetherian as well.
(7) Find a subring $R \subseteq \mathbb{Z}[X]$ such that R is not Noetherian.
(8) Show that the ring $\mathbb{Z}[\sqrt{2}]$ is Euclidean.
(9) Let $d \in \mathbb{C} \backslash \mathbb{Z}$ such that $d^{2} \in \mathbb{Z}$. We define:

$$
v: \mathbb{Q}(d) \rightarrow \mathbb{Q}, \quad v(n+m d)=n^{2}-m^{2} d^{2}
$$

Show the following.
(a) For each $\alpha, \beta \in \mathbb{Q}(d)$, we have

$$
v(\alpha \beta)=v(\alpha) v(\beta) .
$$

(b) For each $\alpha \in \mathbb{Z}[d]$, we have $\alpha \in \mathbb{Z}[d]^{*}$ if and only if $v(\alpha) \in\{-1,1\}$.
(10) Describe the group $\mathbb{Z}[\sqrt{-5}]^{*}$.
(11) Show that the group $\mathbb{Z}[\sqrt{2}]^{*}$ is infinite.

