ALGEBRA 1R, Problem List 11

Let R be a commutative ring with 1 and $n \in \mathbb{N}_{>0}$.

(1) Let $r_1, \ldots, r_n \in R$. Show that:

$$(r_1,\ldots,r_n)=r_1R+\ldots+r_nR.$$

(2) Let $I \leq R$ and

$$\sqrt{I} := \{ a \in R : (\exists n \in \mathbb{N}) (a^n \in I) \}.$$

Show that $\sqrt{I} \leq R$.

- (3) Let $f : R \to S$ be a homomorphism of commutative rings with 1, $I \leq R$, and $J \leq S$. Show the following:
 - $f^{-1}(J) \leq R$.
 - If f is an epimorphism, then $f(I) \leq S$.
 - Give an example of f, I such that $f(I) \not \leq S$.
- (4) Find $f \in \mathbb{Q}[X]$ such that

$$(f) = (X^2 - 1, X^3 + 1).$$

- (5) Show that the ideal $(2, X) \leq \mathbb{Z}[X]$ is not principal.
- (6) Let $\phi : R \to S$ be an epimorphism of rings, where R is Noetherian. Show that S is Noetherian as well.
- (7) Find a subring $R \subseteq \mathbb{Z}[X]$ such that R is not Noetherian.
- (8) Show that the ring $\mathbb{Z}[\sqrt{2}]$ is Euclidean.
- (9) Let $d \in \mathbb{C} \setminus \mathbb{Z}$ such that $d^2 \in \mathbb{Z}$. We define:

$$v: \mathbb{Q}(d) \to \mathbb{Q}, \quad v(n+md) = n^2 - m^2 d^2.$$

Show the following.

(a) For each $\alpha, \beta \in \mathbb{Q}(d)$, we have

$$v(\alpha\beta) = v(\alpha)v(\beta).$$

(b) For each $\alpha \in \mathbb{Z}[d]$, we have $\alpha \in \mathbb{Z}[d]^*$ if and only if $v(\alpha) \in \{-1, 1\}$.

(10) Describe the group $\mathbb{Z}[\sqrt{-5}]^*$.

(11) Show that the group $\mathbb{Z}[\sqrt{2}]^*$ is infinite.