ALGEBRA 1R, Problem List 10

Let R and S be commutative rings with 1 and $n \in \mathbb{N}$.

- (1) Assume that R is a Boolean ring that is for each $r \in R$ we have $r^2 = r$.
 - (a) Show that for each $r \in R$ we have r + r = 0.
 - (b) For each set X, find a natural structure of a Boolean ring on the set of all subsets of X.
- (2) Find a monomorphism of rings

$$R \to \operatorname{End}(R, +)$$

and a monomorphism of groups

$$R^* \to \operatorname{Aut}(R, +).$$

(3) Check whether the monomorphism

$$R^* \to \operatorname{Aut}(R, +)$$

from Problem (2) above is an isomorphism in the following cases:

- (a) $R = \mathbb{Q}$,
- (b) $R = \mathbb{R}$,

(c)
$$R = \mathbb{C}$$
.

- (4) Show that R[X] with the operations given during the lecture is a commutative ring with 1 and that R[X] is a subring of R[X].
- (5) Show that if R is a domain, then R[X] is a domain as well.
- (6) Let $F = \sum a_i X^i \in R[X]$. Show that $F \in R[X]^*$ if and only if $a_0 \in R^*$.
- (7) Let R be a domain and

$$P = a_0 + a_1 X + \ldots + a_n X^n \in R[X].$$

Show that $P \in R[X]^*$ if and only if $a_1 = \ldots = a_n = 0$ and $a_0 \in R^*$.

- (8) Find R and $a \in R \setminus \{0\}$ such that $1 + aX \in R[X]^*$.
- (9) Let $f : R \to S$ be a homomorphism of rings and assume that S is a domain. Show that: if there is $r \in R$ such that $f(r) \neq 0$, then $f(1_R) = 1_S$.
- (10) Show that if R is finite, then R is a field if and only if R is a domain.
- (11) Give an example of a field which has 4 elements.