ALGEBRA 1R, Problem List 10

Let R and S be commutative rings with 1 and $n \in \mathbb{N}$.
(1) Assume that R is a Boolean ring that is for each $r \in R$ we have $r^{2}=r$.
(a) Show that for each $r \in R$ we have $r+r=0$.
(b) For each set X, find a natural structure of a Boolean ring on the set of all subsets of X.
(2) Find a monomorphism of rings

$$
R \rightarrow \operatorname{End}(R,+)
$$

and a monomorphism of groups

$$
R^{*} \rightarrow \operatorname{Aut}(R,+)
$$

(3) Check whether the monomorphism

$$
R^{*} \rightarrow \operatorname{Aut}(R,+)
$$

from Problem (2) above is an isomorphism in the following cases:
(a) $R=\mathrm{Q}$,
(b) $R=\mathbb{R}$,
(c) $R=\mathbb{C}$.
(4) Show that $R \llbracket X \rrbracket$ with the operations given during the lecture is a commutative ring with 1 and that $R[X]$ is a subring of $R \llbracket X \rrbracket$.
(5) Show that if R is a domain, then $R \llbracket X \rrbracket$ is a domain as well.
(6) Let $F=\sum a_{i} X^{i} \in R \llbracket X \rrbracket$. Show that $F \in R \llbracket X \rrbracket^{*}$ if and only if $a_{0} \in R^{*}$.
(7) Let R be a domain and

$$
P=a_{0}+a_{1} X+\ldots+a_{n} X^{n} \in R[X] .
$$

Show that $P \in R[X]^{*}$ if and only if $a_{1}=\ldots=a_{n}=0$ and $a_{0} \in R^{*}$.
(8) Find R and $a \in R \backslash\{0\}$ such that $1+a X \in R[X]^{*}$.
(9) Let $f: R \rightarrow S$ be a homomorphism of rings and assume that S is a domain. Show that: if there is $r \in R$ such that $f(r) \neq 0$, then $f\left(1_{R}\right)=1_{S}$.
(10) Show that if R is finite, then R is a field if and only if R is a domain.
(11) Give an example of a field which has 4 elements.

