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Borel reducibility.

Definition. Let FE,F be analytic equivalence
relations on X,Y. Say that £ < F' if there is a
Borel function A : X — Y which is a reduction
Vrg,z1 € X zg E 21 <> h(xg) F h(x1).

Example. Eg on 2%, connecting x,y if xAy is
finite.

Example. 5 on (2¥)%, connecting z,y if rng(x) =
mg(y).

Example. Epx_ on w® connecting x,y if z —y
IS bounded.



Main challenge.

Proving that E is not reducible to F

Definition. A property & of equivalence re-
lations is a Borel reducibility invariant if ®(F)
and E < F implies ®(F).

A dream. Finding reducibility invariants that
connect to higher stages of the cumulative
hierarchy, similar to Shelah’s classification of
models.



Forcing.

Interpretations. Every Polish space and an-
alytic subset of a Polish space have canonical
interpretation in any generic extension. De-
noted by same letter.

Shoenfield absoluteness. Every IT3 sentence
is absolute between forcing extensions.

Example. If E, F are analytic equivalence re-
lations on X,Y and A : X — Y is a function,
the statement “h is a reduction” is II5 and
therefore absolute.

Example. If £, F are Borel then the statement
E < F is I1} and therefore absolute.



Pinned names and equivalence relations.

Definition. (Kanovei) Let E be an analytic
equivalence relation on X. A P-name 7 for an
element of X is E-pinned if P x Pl-7 E 1.

Definition. 7 is E-trivial if there is a point
r e X such that PIFrrt E x.

Definition. FE is pinned if every E-pinned name
on every poset is trivial.

Main fact. “E is pinned’ is a reducibility in-
variant.



Example. F5 is not pinned.

Proof. Let P be the collapse of 2% to w. Let
A C 2% be uncountable and let 7 be a P-name
for an enumeration of A in the generic exten-
sion in ordertype w. This is a nontrivial pinned
name.

Remark. All pinned names for F» can be rep-
resented in this way.

Question. (Kechris) Is F5 minimal among the
unpinned equivalence relations?



Example. Eg_is pinned.

Proof. Let P be a poset and 7 a pinned Eg -
name. There is a condition p € P and a num-
ber n such that for every m € w the possibili-
ties for r(m) are at most n far apart below p.
Let x € w¥ be a point defined by x(m) =the
least number k£ such that there is g < p with
gk 7(m) = k. Then p Ik 7 Eg_ % and 7 is
pinned.

Remark. Ef_is not the <-largest pinned equiv-
alence relation.

Question. Is there a-<-largest pinned equiva-
lence relation?



Other features of pinned equivalence
relations

Theorem. The following are equivalent for an
analytic equivalence relation E:

e I IS unpinned;
e I is unpinned in all generic extensions;

e there is a nontrivial pinned name in every
poset collapsing N7 to Ng.

If £ is Borel on X thentheset {AC X :ET A
is pinned} is I1} on 1.



A partial dichotomy.

Theorem. Let k be a measurable cardinal.
Let W be the Solovay choiceless model derived
from k. The following are equivalent for any
Borel equivalence relation E in W:

e F iS unpinned;

o [H < F.

For analytic equivalence relation FE, Ey, <w E
must be added to the second item.



Equivalence relation on names.

Definition. Let E be an equivalence relation
on a Polish space X. Let P,Q be posets and
7,0 be P,()-names for elements of X. Say that
(P,7) E{Q,a) TPxQIFTEo.

Fact. F is an equivalence relation on pinned
names.

Question. How many FE classes are there? On
which posets do they live?
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The pinned cardinal

Definition. Let E be an analytic equivalence
relation on a Polish space X. The pinned car-
dinal x(FE) is the smallest x such that every
pinned name 7 has a E-equivalent on a poset
of size < k.

e x(F) can be equal to oo;

e xK(F) = XNq if E is pinned as a definitory
matter.

Fact. if £ < I then x(F) < k(F).
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Basic features of the pinned cardinal.

Bounds:

o v(F) <y, if E is Borel,

e x(F) <the first measurable if x(EF) < oo;

o x(F) = x iff Ey, is weakly reducible to E.

Operations:

o k(ET) < (2<r(E))t;

o x([I7 En) < max(k(En)) whenever I is a
Borel ideal on w and =y is pinned.
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Examples.
o ’{(Fa) — 33?;

e there are Borel equivalence relations E, for
each countable a« > 0 such that provably

e there is Borel E such that provably x(FE) =
(REO)T;

e there is analytic E such that under MA,
k(E) = N5 iff Chang’'s conjecture holds;

Question. What is the pinned cardinal of the
measure equivalence?
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The X, example.

Definition. A Ly w-sentence ¢ is set-like if
there is a binary relation e such that ¢ proves
that e is extensional and well-founded.

Theorem. Let ¢ be set-like and E4 be the
isomorphism of countable models of ¢. Then
k(Eg) =the least cardinal x such that ¢ has no
model of size k.

Exercise. By induction on 0 = a € wy build
sentences ¢, such that the sentence has mod-
els of all sizes < Ry but no model of size N,.

TO ¢q, add a sentence saying ‘e is an exten-
sional well-founded relation of rank o' . This
does not change the cardinal, since |V ,4,| >
Ng.
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The cardinal arithmetic example.

1. Find sentences ¢,y such that ¢ has models
of size < N, and ¢ has models of size < Ng. Let
0 be the sentence “A= ¢, B= 1, and C is a
collection of pairwise distinct maps from B to
A" . Add an extensional well-founded relation
of rank < w+ w + 2. Then k(Ey) = (R0 T.

2. Find sentences ¢, 1 such that ¢ has models
of size < N,,41 and ¢ has models of size < «.
Let v = ¢ V ¢, and add an extensional well-
founded relation of rank < w4+ w + 2. Then
k(Ey) = max(Ryp1,0)T.

3. Ep is not Borel reducible to E, since SCH
fails in a forcing extension and so k(FEy) <
x(Ey,) is consistent.
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Chang Conjecture Example.

Fact. Under MA, CC is equivalent to (5;) —
1

w

(W>w'

Let f: X XX — w be a universal Fy-function.
Let A C X% be the coanalytic set of y such that
rmg(y) xrng(y) contains no infinite rectangle on
which f is constant. Let E be (Fb | A)U(AxA).
This is an analytic equivalence relation.

If MA and CC holds then no pinned name 7 can
have |rng(7)|¥ > X5 and so k(E) = R,. If CC
fails, let g : wo X wo» — w be a counterexample
to the partition, let A : wo — X be such that
g = foh, and let 7 be a Coll(w,w>)-name for
rmg(h). So k(E) > No.
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Pinned names and posets.

Fact. Nontrivial pinned names cannot live on
proper posets. They mostly live on collapse
posets.

Example. If 7 is an F>-pinned name then there
is a set A C 2¥ such that IF rng(7) = A.

Definition. Let E be an analytic equivalence
relation on X and 7 an E-pinned name on some
P. k(1) is the unique cardinal x if it exists such
that a poset Q carries an E-equivalent to 7 if
and only if @ collapses xk to Ng.

Definition. FE is cardinalistic if x(7) exists for
every E-pinned name .
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Examples of cardinalistic relations.

Theorem. Every orbit equivalence relation is
cardinalistic.

Theorem. The cardinalistic property is pre-
served under Friedman—Stanley jump, product
modulo an ideal J such that = is pinned.

Fact. To be cardinalistic is a reducibility in-
variant.
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Nonexamples of cardinalistic relations.

Definition. The mutual domination equiva-
lence relation E on X = (w¥)¥ connects points
x,y if for every n there is m such that z(n)
is modulo finite dominated by y(m) and vice
versa.

Theorem. If there is a modulo finite increas-
ing wp-sequence of points in w*, then E is not
cardinalistic.

Proof. Let (zo : o € wp) be the increasing
sequence, let P be the Namba forcing adding
a cofinal sequence (an : n € w), and let 7 =

(Ta, 1M € wW).
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Hjorth’s turbulence.

Definition. Let E, F' be analytic equivalence
relations on X,Y. FE is F-ergodic if for every
Borel homomorphism A : X — Y, there is an
F-class with comeager h-preimage.

e turbulence applies to orbit equivalence re-
lations only—dynamic concept;

e turbulent equivalences are F-ergodic for ev-
ery F' classifiable by countable structures;

e useful only in Baire category context.
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Turbulence generalized.

independent of any dynamical context;

compares certain generic extensions;

ergodicity results;

can be tailored to measure context etc.
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Motivating restatement of turbulence.

Definition. Let G act on X continuously. Let
Pgs be the Cohen poset on G, with generic g.
Let Px be the Cohen poset on X, with generic

I.

Theorem. The following are equivalent:
1. the action is generically turbulent;

2. Pax Py lFV[E]NV][§-3]=V.
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Trimness and variations.

Definition. Let E be an analytic equivalence
relation on X. E is trim if for every pair V[Gp], V[G1]
of generic extensions containing respective E-
related points xzg, x1, if V[Go]NV[G1] = V then

xo E x for some z c V.

Generalization I. B-trimness results from re-
stricting the extensions to posets with property

L.

Generalization II. w-trimness results from con-
sidering infinitely many extensions.
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Connection with pinned property.

Definition. Let 7,0 be P,Q-names respec-
tively for elements of X. Say that (P,7) E
(Q,o0) is for every p € P and every q € @Q there
are generic extensions V[G], V[H] such that

e pcGCP,qgeHCQ;

o VIG]INVI[H] =0;

o tau/G F o/H.

Fact. [ is an equivalence relation on trim
names, an equivalence is trim if there are non-
trivial trim names etc.
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Main properties.

all variants of trimness are reducibility in-
variants;

trimness and proper-trimness are absolute
between forcing extensions;

trim is equivalent to the conjunction of
pinned and proper-trim;

proper-trim is equivalent to Cohen-trim.
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Theorem. Let J be the ideal on 2<% gener-
ated by branches. The relation = is trim.

Proof. Let xg € V[Gg], 1 € V[G1] are = ;-
related points. Assume V[Gp]NV[G1] =V and
xg =y x for every x € V. Work for contradic-
tion.

Let T = {t € 2<% 1 zq | [t] &5 y for any y €
V}. This is a tree with no terminal nodes,
containing 0. It is in V[Gpg] N V[G1], so in V.
Pick an infinite branch b € V.

There is t € b such that zg [ [t] = yo | [t] Off
b. Then zqg | [t] off b is in V, contradicting the
definition of T..
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Theorem. F5 is proper-trim.

Proof. Suppose that V[Gg], V[G1] are proper
generic extensions containing F>-related points
xo,x1. Suppose that V[Gp]NnV[G1] = V. Work
to find x € V with = F5 xg.

For every z € rng(zg) Nrng(zy), z € V[Gp] N
V[G1] = V. Thus, rng(xzg) = rng(x1) is a sub-
set of V and an element of V.

Since V[Gp] is proper, rng(xzg) is countable in
V and so there is x € V such that rng(x) =
rmg(xg) and so x F» xg as required.

27



Theorem. Let J be theidealon A =TJ,,c,(n+
1) generated by graphs of functions. Then =
IS not Cohen-trim.

Proof. Let P be the poset of partial finite
functions from A to 2 ordered by inclusion,
adding # € 24. Find generic filters Gg,G1 C P
such that z/Gg =5 ©/G1 and V[Gp] N V[G1] =
0.

The poset ( adding the two generics consists
of conditions q = (pg, p1) wWhere pg,p1 € P with
the same domain such that {a € dom(pg) :
po(a) # p1(a)} is a graph of a partial function.

Key: if plk 7 C Ord is not in V, then there are
extensions pg,p1 < p which differ at just one
entry and an ordinal « such that pg IF & € 7
and p1 lFa ¢ 7.
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Ergodicity in category

Definition. Let FE,F be analytic equivalence
relations on X,Y, and t a Polish topology on
X. Say that F is F-t-ergodic if for every Borel
homomorphism h : X — Y there is an F'-class
with t-comeager preimage.

Example. FE(g is id-t-ergodic where t is the
usual topology on 2%.

Fact. Different topologies may give different
ergodicity properties.
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Theorem. If E is not proper-trim, then there
is a Polish topology ¢t on X with meager classes
such that for every proper-trim F, E is F-t-
ergodic.

Proof. Let 7 be a nontrivial trim name on the
Cohen poset. Let t be an associated Polish
topology on X (B is meager if PIF 7 ¢ B).
This topology works.

Suppose that h: X — Y is a Borel homomor-
phism of E to proper-trim F. Let G,H C P
be generic filters such that /G E 7/H and
VIGINnV[H] = V. Then h(r/G) F h(r/H),
and proper-trimness of F' shows that there is
y € YNV such that h(r/G) Fy. Then h=1[y]r
IS t-comeager.
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Corollaries.

Let J be the ideal on 2<% generated by branches.

Corollary. If E is an orbit equivalence of a
turbulent action, then E is = j-ergodic. (FE is
not proper-trim while E is.)

Corollary. If F' is an equivalence classifiable
by countable structures then =; is F-ergodic.
(= is not Cohen-w-trim while F' is.)

31



Ergodicity in measure

Definition. Let FE,F be analytic equivalence
relations on X,Y, let u be a Borel probability
measure on X. Say that F is F-u-ergodic if for
every Borel homomorphism h: X — Y there is
an F'-class with preimage of full y-mass.

Example. FEg is id-u-ergodic for the usual
probability measure p on 2«.

Fact. Ergodicity in measure in K, equiva-
lence relations closely relates to concentration
of measure.
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Concentration of measure.

Definition. A sequence (X, dn, tin, €n,on) has
concentration of measure if

e X, is a (finite) set with metric d,, and prob-
ability measure un;

® £,,0n > 0 are real numbers tending to zero;

e for every set A C X,, of up-mass > én, the
en-neighborhood of A has up-mass > 1/2.

Fact. Many examples such as n-dimensional
spheres with the usual measure and metric.
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Theorem. Let (Xy,dn, un,en, on) have concen-
tration of measure. Let

o X = ][, Xn,u =1y tn;

e x I y if there is m such that for all n,
dn(z(n),y(n)) < mén.

Then E is F-u-ergodic for every proper-trim
equivalence relation F..
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Proof. Add p-random points z,y € X such
that Vn dn(z(n),y(n) <6 and Vz] N V]y] = V.

The poset consists of all pairs g = (By, sq, tq)
where B, C X is a Borel positive set, sq,tq €
[Them Xn, for all n € m dn(sq(n),tq(n)) <4, and
Bg C [s4].

The ordering is defined by » < q if B, C Bg, sq C
srtqg C tr, and By -ty C Bg-tq. The names z,y

are defined as =z = Ugeg 8¢ and y = Ugeq tg-

The fact that V[z] N V[y] = V uses the con-
centration of measure assumption.
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Corollary. E- is F-u-ergodic for every equiva-
lence relation F' classifiable by countable struc-
tures.

Here, the equivalence relation E», on X = 2%

relates points z,y if > {1/n+1:x(n) #yn)} <
oo. I'he measure p is the usual measure on the
space 2%,
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Separation properties of equivalence
relations.

Fact. (Martin—Solovay) If MA for « holds and
Ag, A1 C X are disjoint sets of size < k, then
there is a K, set Bp such that Ag C Bg and
A1 N Bg=0.

Question. Does something similar hold for
quotient spaces X/E for various equivalence
relations E7

Fact. Possessing a separation property is a
reducibility invariant.
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A correct generalization of
Martin—Solovay.

Main tool. If MA o-centered for « holds, G C
X"is an Fy set and A C X is G-free, then there
isa Ky set B such that A C B and B is G-free.

Example. To separate disjoint sets Ap, A1 C
X, apply the tool to Y = X x 2, G connecting
distinct points with the same X coordinate,
and A = (AO X {O}) U (Al X {1})

Fact. In ZFC, there is a G4-graph G C X2 and
a set A C X of size Ny which is G-free and every
analytic G-free set has countable intersection
with A.
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Where separation holds.

Theorem. If Martin’s Axiom for o-centered
holds at k, then the separation property holds
for Ex_ at k.

Proof. Let Ag, A3 C w® be Eg _-unrelated sets
of size < k. Apply the tool to Y = X x 2, G
connecting distinct points with Eg_-equivalent
X coordinates, and A = (Agx{0})U(A1 x{1}).

Question. Let J be an analytic P-ideal on w.
Does separation hold for = ;7
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Where separation fails.

Theorem. There is a sequence (zy : a € wy) Of
pairwise Fs-inequivalent points of X = (2¥)%
such that no analytic Fs-invariant set A C X
cuts out a stationary-costationary piece.

Proof. Let xz, be points such that the sets
rmg(xzq) C 2% continuously increase with re-
spect to inclusion. Let A C X be an ana-
lytic Fr-invariant set. Let P = Coll(w,wq), let
T be a name for an element of X enumerat-
ing U, rng(zq) and let p decide the statement
T € A.

If pl- 7€ A then {a: x4 € A} contains a club,
if pl-7¢& A then {a:zq & A} contains a club.
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I-sequences.

Definition. Let EF be an analytic equivalence
relation on X, I a o-ideal on a cardinal k. A
sequence (xq : a € k) iS an I-sequence if for
every analytic E-invariant set A, {a:zq € A} €
Ior{a:xqd A} € 1.

Fact. Not having an I-sequence is a reducibil-
ity invariant.
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Theorem. Every unpinned equivalence rela-
tion has an I-sequence for I =the nonstation-
ary ideal on w;q.

Proof. Let EF be an unpinned equivalence rela-
tion on a space X. Let ¥ be a nontrivial pinned
P-name for E, where |P| = Nj.

Let (Mq : o € wy) be an e-tower of continuous
elementary submodels. Let zo € X represent
the unique E-class of 7/g where g C My N P is
generic. (xq : a € wy) iS an I-sequence.

Suppose that A C X is analytic E-invariant
and p IF 7 € A. Whenever N is a countable
elementary submodel, there is a € wq such that
PNN=PnNM,. Then zo € A.
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Theorem. (MA) If J is an analytic P-ideal
then =; has no I-sequence for a normal o-
ideal I.

Proof. Find a submeasure u on w such that
J={a Cw:limpu(a\n) =0} Let d(x,y)=
limp u(zAy \ n) for z,y € X = P(w). Work
with I =the nonstationary ideal on wj. Let
(ra ' a € wy) be a sequence.

Either there is £ € X and € > 0 such that
{a : d(zq,x) < €} is stationary costationary.

Or, there is a club C and ¢ > 0 such that
d(za,zg) > ¢ if a 7= g€ C. Let C = SgUS,
be a partition into stationary sets. Use the
graph theorem to find a K,-set A C X such
that d(zq, A) > ¢ if « € Sg and xg € Aif g e S5y.

Let B={z € X : d(z, A) > &}.
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Theorem. (MA) If E is classifiable by count-
able structures, then E has no I-sequence for
any normal < No-complete ideal.

Proof. Deal with E = F5, I =nonstationary
ideal on wp. Let (zo : a € wp) be a sequence.
Let a = {z € 2¥: {a: 2z € rng(zq)} contains a
club}. The set a C 2% is countable.

Use normality to pick points (zq : @ € C) such
that zqo € rng(za) \ Ugeq ra(zg). Let C = SpU
S1 be a partition into stationary sets. Use the
graph theorem to find a Ks-set A C 2% such
that Anrng(zq) =0 ifa € Sg and ANrng(zq) =
{za} If a € 57.

Let B={x € X :rng(z) N A = 0}.
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Theorem. (MA) Let E be the mutual domi-
nation equivalence. E has an I-sequence where
I is the nonstationary ideal on wo restricted to
cof(w).

Proof. Let (zo : a € wp) be a modulo finite
increasing sequence in w*. If cof(a) = w then
let xo = (2q, - M € w) TOr ap, — a. (T : @ €
wo Ncof(w)) is an I-sequence.

If A C X is an analytic E-invariant set, let P =
Coll(w,w>2), let 7 be a P-name for (zq, : n € w)
for an — w¥ . If pI-7 € A then there is a club
C' C wp such that Va € C' z4 € A.
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