BOREL REDUCIBILITY AND HIGHER SET THEORY

Jindrich Zapletal University of Florida

Borel reducibility.

Definition. Let E, F be analytic equivalence relations on X, Y. Say that $E \leq F$ if there is a Borel function $h: X \to Y$ which is a reduction $\forall x_0, x_1 \in X \ x_0 E \ x_1 \leftrightarrow h(x_0) F \ h(x_1).$

Example. E_0 on 2^{ω} , connecting x, y if $x \Delta y$ is finite.

Example. F_2 on $(2^{\omega})^{\omega}$, connecting x, y if rng(x) = rng(y).

Example. $E_{K_{\sigma}}$ on ω^{ω} connecting x, y if x - y is bounded.

Main challenge.

Proving that ${\cal E}$ is not reducible to ${\cal F}$

Definition. A property Φ of equivalence relations is a Borel reducibility invariant if $\Phi(F)$ and $E \leq F$ implies $\Phi(E)$.

A dream. Finding reducibility invariants that connect to higher stages of the cumulative hierarchy, similar to Shelah's classification of models.

Forcing.

Interpretations. Every Polish space and analytic subset of a Polish space have canonical interpretation in any generic extension. Denoted by same letter.

Shoenfield absoluteness. Every Π_2^1 sentence is absolute between forcing extensions.

Example. If E, F are analytic equivalence relations on X, Y and $h : X \to Y$ is a function, the statement "h is a reduction" is Π_2^1 and therefore absolute.

Example. If E, F are Borel then the statement $E \leq F$ is Π_2^1 and therefore absolute.

Pinned names and equivalence relations.

Definition. (Kanovei) Let E be an analytic equivalence relation on X. A P-name τ for an element of X is E-pinned if $P \times P \Vdash \tau_l E \tau_r$.

Definition. τ is *E*-*trivial* if there is a point $x \in X$ such that $P \Vdash \tau E \dot{x}$.

Definition. *E* is *pinned* if every *E*-pinned name on every poset is trivial.

Main fact. "E is pinned" is a reducibility invariant.

Example. F_2 is not pinned.

Proof. Let *P* be the collapse of 2^{ω} to ω . Let $A \subset 2^{\omega}$ be uncountable and let τ be a *P*-name for an enumeration of *A* in the generic extension in ordertype ω . This is a nontrivial pinned name.

Remark. All pinned names for F_2 can be represented in this way.

Question. (Kechris) Is F_2 minimal among the unpinned equivalence relations?

Example. $E_{K_{\sigma}}$ is pinned.

Proof. Let P be a poset and τ a pinned $E_{K_{\sigma}}$ name. There is a condition $p \in P$ and a number n such that for every $m \in \omega$ the possibilities for $\tau(m)$ are at most n far apart below p. Let $x \in \omega^{\omega}$ be a point defined by x(m) =the least number k such that there is $q \leq p$ with $q \Vdash \tau(\check{m}) = \check{k}$. Then $p \Vdash \tau E_{K_{\sigma}} \check{x}$ and τ is pinned.

Remark. $E_{K_{\sigma}}$ is not the \leq -largest pinned equivalence relation.

Question. Is there $a \le largest$ pinned equivalence relation?

Other features of pinned equivalence relations

Theorem. The following are equivalent for an analytic equivalence relation E:

- *E* is unpinned;
- *E* is unpinned in all generic extensions;
- there is a nontrivial pinned name in every poset collapsing \aleph_1 to \aleph_0 .

If E is Borel on X then the set $\{A \subset X : E \upharpoonright A$ is pinned} is Π_1^1 on Σ_1^1 .

A partial dichotomy.

Theorem. Let κ be a measurable cardinal. Let W be the Solovay choiceless model derived from κ . The following are equivalent for any Borel equivalence relation E in W:

- *E* is unpinned;
- $F_2 \leq E$.

For analytic equivalence relation E, $E_{\omega_1} \leq_w E$ must be added to the second item.

Equivalence relation on names.

Definition. Let E be an equivalence relation on a Polish space X. Let P, Q be posets and τ, σ be P, Q-names for elements of X. Say that $\langle P, \tau \rangle \overline{E} \langle Q, \alpha \rangle$ if $P \times Q \Vdash \tau E \sigma$.

Fact. \overline{E} is an equivalence relation on pinned names.

Question. How many \overline{E} classes are there? On which posets do they live?

The pinned cardinal

Definition. Let E be an analytic equivalence relation on a Polish space X. The pinned cardinal $\kappa(E)$ is the smallest κ such that every pinned name τ has a \overline{E} -equivalent on a poset of size $< \kappa$.

- $\kappa(E)$ can be equal to ∞ ;
- $\kappa(E) = \aleph_1$ if E is pinned as a definitory matter.
- **Fact.** if $E \leq F$ then $\kappa(E) \leq \kappa(F)$.

Basic features of the pinned cardinal.

Bounds:

- $\kappa(E) < \beth_{\omega_1}$ if *E* is Borel;
- $\kappa(E)$ <the first measurable if $\kappa(E) < \infty$;
- $\kappa(E) = \infty$ iff E_{ω_1} is weakly reducible to E.

Operations:

•
$$\kappa(E^+) \le (2^{<\kappa(E)})^+;$$

• $\kappa(\prod_I E_n) \leq \max(\kappa(E_n))$ whenever *I* is a Borel ideal on ω and $=_I$ is pinned.

Examples.

- $\kappa(F_{\alpha}) = \beth_{\alpha}^+;$
- there are Borel equivalence relations E_{α} for each countable $\alpha > 0$ such that provably $\kappa(E_{\alpha}) = \aleph_{\alpha};$
- there is Borel E such that provably $\kappa(E) = (\aleph_{\omega}^{\aleph_0})^+;$
- there is analytic E such that under MA, $\kappa(E) = \aleph_2$ iff Chang's conjecture holds;

Question. What is the pinned cardinal of the measure equivalence?

The \aleph_{α} example.

Definition. A $L_{\omega_1\omega}$ -sentence ϕ is *set-like* if there is a binary relation e such that ϕ proves that e is extensional and well-founded.

Theorem. Let ϕ be set-like and E_{ϕ} be the isomorphism of countable models of ϕ . Then $\kappa(E_{\phi})$ =the least cardinal κ such that ϕ has no model of size κ .

Exercise. By induction on $0 \neq \alpha \in \omega_1$ build sentences ϕ_{α} such that the sentence has models of all sizes $\langle \aleph_{\alpha} \rangle$ but no model of size \aleph_{α} .

To ϕ_{α} , add a sentence saying "e is an extensional well-founded relation of rank α ". This does not change the cardinal, since $|V_{\omega+\alpha}| \geq \aleph_{\alpha}$.

The cardinal arithmetic example.

1. Find sentences ϕ, ψ such that ϕ has models of size $\leq \aleph_{\omega}$ and ψ has models of size $\leq \aleph_0$. Let θ be the sentence " $A \models \phi, B \models \psi$, and C is a collection of pairwise distinct maps from B to A". Add an extensional well-founded relation of rank $\leq \omega + \omega + 2$. Then $\kappa(E_{\theta}) = (\aleph_{\omega}^{\aleph_0})^+$.

2. Find sentences ϕ , ψ such that ϕ has models of size $\leq \aleph_{\omega+1}$ and ψ has models of size $\leq \mathfrak{c}$. Let $\nu = \psi \lor \phi$, and add an extensional wellfounded relation of rank $\leq \omega + \omega + 2$. Then $\kappa(E_{\nu}) = \max(\aleph_{\omega+1}, \mathfrak{c})^+$.

3. E_{θ} is not Borel reducible to E_{ν} since SCH fails in a forcing extension and so $\kappa(E_{\theta}) < \kappa(E_{\nu})$ is consistent.

Chang Conjecture Example.

Fact. Under MA, CC is equivalent to $\begin{pmatrix} \omega_2 \\ \omega_2 \end{pmatrix} \rightarrow \begin{pmatrix} \omega \\ \omega \end{pmatrix}^1_{\omega}$.

Let $f: X \times X \to \omega$ be a universal F_{σ} -function. Let $A \subset X^{\omega}$ be the coanalytic set of y such that $\operatorname{rng}(y) \times \operatorname{rng}(y)$ contains no infinite rectangle on which f is constant. Let E be $(F_2 \upharpoonright A) \cup (\tilde{A} \times \tilde{A})$. This is an analytic equivalence relation.

If MA and CC holds then no pinned name τ can have $|\operatorname{rng}(\tau)|^V \ge \aleph_2$ and so $\kappa(E) = \aleph_2$. If CC fails, let $g: \omega_2 \times \omega_2 \to \omega$ be a counterexample to the partition, let $h: \omega_2 \to X$ be such that $g = f \circ h$, and let τ be a $\operatorname{Coll}(\omega, \omega_2)$ -name for $\operatorname{rng}(h)$. So $\kappa(E) > \aleph_2$.

Pinned names and posets.

Fact. Nontrivial pinned names cannot live on proper posets. They mostly live on collapse posets.

Example. If τ is an F_2 -pinned name then there is a set $A \subset 2^{\omega}$ such that $\Vdash \operatorname{rng}(\tau) = \check{A}$.

Definition. Let E be an analytic equivalence relation on X and τ an E-pinned name on some P. $\kappa(\tau)$ is the unique cardinal κ if it exists such that a poset Q carries an \overline{E} -equivalent to τ if and only if Q collapses κ to \aleph_0 .

Definition. *E* is cardinalistic if $\kappa(\tau)$ exists for every *E*-pinned name τ .

Examples of cardinalistic relations.

Theorem. Every orbit equivalence relation is cardinalistic.

Theorem. The cardinalistic property is preserved under Friedman–Stanley jump, product modulo an ideal J such that $=_J$ is pinned.

Fact. To be cardinalistic is a reducibility invariant.

Nonexamples of cardinalistic relations.

Definition. The mutual domination equivalence relation E on $X = (\omega^{\omega})^{\omega}$ connects points x, y if for every n there is m such that x(n) is modulo finite dominated by y(m) and vice versa.

Theorem. If there is a modulo finite increasing ω_2 -sequence of points in ω^{ω} , then E is not cardinalistic.

Proof. Let $\langle z_{\alpha} : \alpha \in \omega_2 \rangle$ be the increasing sequence, let *P* be the Namba forcing adding a cofinal sequence $\langle \alpha_n : n \in \omega \rangle$, and let $\tau = \langle x_{\alpha_n} : n \in \omega \rangle$.

19

Hjorth's turbulence.

Definition. Let E, F be analytic equivalence relations on X, Y. E is F-ergodic if for every Borel homomorphism $h : X \to Y$, there is an F-class with comeager h-preimage.

- turbulence applies to orbit equivalence relations only-dynamic concept;
- turbulent equivalences are *F*-ergodic for every *F* classifiable by countable structures;
- useful only in Baire category context.

Turbulence generalized.

- independent of any dynamical context;
- compares certain generic extensions;
- ergodicity results;
- can be tailored to measure context etc.

Motivating restatement of turbulence.

Definition. Let *G* act on *X* continuously. Let P_G be the Cohen poset on *G*, with generic \dot{g} . Let P_X be the Cohen poset on *X*, with generic \dot{x} .

Theorem. The following are equivalent:

1. the action is generically turbulent;

2. $P_G \times P_X \Vdash V[\dot{x}] \cap V[\dot{g} \cdot \dot{x}] = V.$

Trimness and variations.

Definition. Let *E* be an analytic equivalence relation on *X*. *E* is *trim* if for every pair $V[G_0], V[G_1]$ of generic extensions containing respective *E*related points x_0, x_1 , if $V[G_0] \cap V[G_1] = V$ then $x_0 E x$ for some $x \in V$.

Generalization I. \mathfrak{P} -trimness results from restricting the extensions to posets with property \mathfrak{P} .

Generalization II. ω -trimness results from considering infinitely many extensions.

Connection with pinned property.

Definition. Let τ, σ be P, Q-names respectively for elements of X. Say that $\langle P, \tau \rangle \ \hat{E} \langle Q, \sigma \rangle$ is for every $p \in P$ and every $q \in Q$ there are generic extensions V[G], V[H] such that

- $p \in G \subset P$, $q \in H \subset Q$;
- $V[G] \cap V[H] = 0;$
- $tau/G \ E \ \sigma/H$.

Fact. \hat{E} is an equivalence relation on trim names, an equivalence is trim if there are non-trivial trim names etc.

Main properties.

- all variants of trimness are reducibility invariants;
- trimness and proper-trimness are absolute between forcing extensions;
- trim is equivalent to the conjunction of pinned and proper-trim;
- proper-trim is equivalent to Cohen-trim.

Theorem. Let J be the ideal on $2^{<\omega}$ generated by branches. The relation $=_J$ is trim.

Proof. Let $x_0 \in V[G_0]$, $x_1 \in V[G_1]$ are $=_{J^-}$ related points. Assume $V[G_0] \cap V[G_1] = V$ and $x_0 \neq_J x$ for every $x \in V$. Work for contradiction.

Let $T = \{t \in 2^{<\omega} : x_0 \upharpoonright [t] \neq_J y \text{ for any } y \in V\}$. This is a tree with no terminal nodes, containing 0. It is in $V[G_0] \cap V[G_1]$, so in V. Pick an infinite branch $b \in V$.

There is $t \in b$ such that $x_0 \upharpoonright [t] = y_0 \upharpoonright [t]$ off b. Then $x_0 \upharpoonright [t]$ off b is in V, contradicting the definition of T. **Theorem.** F_2 is proper-trim.

Proof. Suppose that $V[G_0]$, $V[G_1]$ are proper generic extensions containing F_2 -related points x_0, x_1 . Suppose that $V[G_0] \cap V[G_1] = V$. Work to find $x \in V$ with $x F_2 x_0$.

For every $z \in \operatorname{rng}(x_0) \cap \operatorname{rng}(x_1)$, $z \in V[G_0] \cap V[G_1] = V$. Thus, $\operatorname{rng}(x_0) = \operatorname{rng}(x_1)$ is a subset of V and an element of V.

Since $V[G_0]$ is proper, $rng(x_0)$ is countable in V and so there is $x \in V$ such that $rng(x) = rng(x_0)$ and so $x F_2 x_0$ as required.

Theorem. Let J be the ideal on $A = \prod_{n \in \omega} (n + 1)$ generated by graphs of functions. Then $=_J$ is not Cohen-trim.

Proof. Let *P* be the poset of partial finite functions from *A* to 2 ordered by inclusion, adding $\dot{x} \in 2^A$. Find generic filters $G_0, G_1 \subset P$ such that $\dot{x}/G_0 =_J \dot{x}/G_1$ and $V[G_0] \cap V[G_1] = 0$.

The poset Q adding the two generics consists of conditions $q = \langle p_0, p_1 \rangle$ where $p_0, p_1 \in P$ with the same domain such that $\{a \in \text{dom}(p_0) :$ $p_0(a) \neq p_1(a)\}$ is a graph of a partial function.

Key: if $p \Vdash \tau \subset Ord$ is not in V, then there are extensions $p_0, p_1 \leq p$ which differ at just one entry and an ordinal α such that $p_0 \Vdash \check{\alpha} \in \tau$ and $p_1 \Vdash \check{\alpha} \notin \tau$.

Ergodicity in category

Definition. Let E, F be analytic equivalence relations on X, Y, and t a Polish topology on X. Say that E is F-t-ergodic if for every Borel homomorphism $h : X \to Y$ there is an F-class with t-comeager preimage.

Example. E_0 is id-*t*-ergodic where *t* is the usual topology on 2^{ω} .

Fact. Different topologies may give different ergodicity properties.

Theorem. If E is not proper-trim, then there is a Polish topology t on X with meager classes such that for every proper-trim F, E is F-tergodic.

Proof. Let τ be a nontrivial trim name on the Cohen poset. Let t be an associated Polish topology on X (B is meager if $P \Vdash \tau \notin B$). This topology works.

Suppose that $h: X \to Y$ is a Borel homomorphism of E to proper-trim F. Let $G, H \subset P$ be generic filters such that $\tau/G \to \tau/H$ and $V[G] \cap V[H] = V$. Then $h(\tau/G) \to h(\tau/H)$, and proper-trimness of F shows that there is $y \in Y \cap V$ such that $h(\tau/G) \to y$. Then $h^{-1}[y]_F$ is *t*-comeager.

Corollaries.

Let J be the ideal on $2^{<\omega}$ generated by branches.

Corollary. If *E* is an orbit equivalence of a turbulent action, then *E* is $=_J$ -ergodic. (*E* is not proper-trim while *E* is.)

Corollary. If *F* is an equivalence classifiable by countable structures then $=_J$ is *F*-ergodic. ($=_J$ is not Cohen- ω -trim while *F* is.)

Ergodicity in measure

Definition. Let E, F be analytic equivalence relations on X, Y, let μ be a Borel probability measure on X. Say that E is F- μ -ergodic if for every Borel homomorphism $h: X \to Y$ there is an F-class with preimage of full μ -mass.

Example. E_0 is id- μ -ergodic for the usual probability measure μ on 2^{ω} .

Fact. Ergodicity in measure in K_{σ} equivalence relations closely relates to concentration of measure.

Concentration of measure.

Definition. A sequence $\langle X_n, d_n, \mu_n, \varepsilon_n, \delta_n \rangle$ has *concentration of measure* if

- X_n is a (finite) set with metric d_n and probability measure μ_n ;
- $\varepsilon_n, \delta_n > 0$ are real numbers tending to zero;
- for every set $A \subset X_n$ of μ_n -mass $> \delta_n$, the ε_n -neighborhood of A has μ_n -mass > 1/2.

Fact. Many examples such as n-dimensional spheres with the usual measure and metric.

Theorem. Let $\langle X_n, d_n, \mu_n, \varepsilon_n, \delta_n \rangle$ have concentration of measure. Let

- $X = \prod_n X_n, \mu = \prod_n \mu_n;$
- $x \in y$ if there is m such that for all n, $d_n(x(n), y(n)) \leq m\delta_n$.

Then E is $F-\mu$ -ergodic for every proper-trim equivalence relation F.

Proof. Add μ -random points $x, y \in X$ such that $\forall n \ d_n(x(n), y(n) \leq \delta \text{ and } V[x] \cap V[y] = V$.

The poset consists of all pairs $q = \langle B_q, s_q, t_q \rangle$ where $B_q \subset X$ is a Borel positive set, $s_q, t_q \in$ $\prod_{n \in m} X_n$, for all $n \in m \ d_n(s_q(n), t_q(n)) \leq \delta$, and $B_q \subset [s_q]$.

The ordering is defined by $r \leq q$ if $B_r \subset B_q, s_q \subset s_r t_q \subset t_r$, and $B_r \cdot t_r \subset B_q \cdot t_q$. The names \dot{x}, \dot{y} are defined as $\dot{x} = \bigcup_{q \in G} s_q$ and $\dot{y} = \bigcup_{q \in G} t_q$.

The fact that $V[x] \cap V[y] = V$ uses the concentration of measure assumption.

Corollary. E_2 is F- μ -ergodic for every equivalence relation F classifiable by countable structures.

Here, the equivalence relation E_2 on $X = 2^{\omega}$ relates points x, y if $\sum \{1/n+1 : x(n) \neq y(n)\} < \infty$. The measure μ is the usual measure on the space 2^{ω} .

Separation properties of equivalence relations.

Fact. (Martin–Solovay) If MA for κ holds and $A_0, A_1 \subset X$ are disjoint sets of size $\leq \kappa$, then there is a K_{σ} set B_0 such that $A_0 \subset B_0$ and $A_1 \cap B_0 = 0$.

Question. Does something similar hold for quotient spaces X/E for various equivalence relations E?

Fact. Possessing a separation property is a reducibility invariant.

A correct generalization of Martin–Solovay.

Main tool. If MA σ -centered for κ holds, $G \subset X^n$ is an F_{σ} set and $A \subset X$ is *G*-free, then there is a K_{σ} set *B* such that $A \subset B$ and *B* is *G*-free.

Example. To separate disjoint sets $A_0, A_1 \subset X$, apply the tool to $Y = X \times 2$, G connecting distinct points with the same X coordinate, and $A = (A_0 \times \{0\}) \cup (A_1 \times \{1\})$.

Fact. In ZFC, there is a G_{δ} -graph $G \subset X^2$ and a set $A \subset X$ of size \aleph_1 which is G-free and every analytic G-free set has countable intersection with A.

38

Where separation holds.

Theorem. If Martin's Axiom for σ -centered holds at κ , then the separation property holds for $E_{K_{\sigma}}$ at κ .

Proof. Let $A_0, A_1 \subset \omega^{\omega}$ be $E_{K_{\sigma}}$ -unrelated sets of size $\leq \kappa$. Apply the tool to $Y = X \times 2$, Gconnecting distinct points with $E_{K_{\sigma}}$ -equivalent X coordinates, and $A = (A_0 \times \{0\}) \cup (A_1 \times \{1\})$.

Question. Let J be an analytic P-ideal on ω . Does separation hold for $=_J$?

Where separation fails.

Theorem. There is a sequence $\langle x_{\alpha} : \alpha \in \omega_1 \rangle$ of pairwise F_2 -inequivalent points of $X = (2^{\omega})^{\omega}$ such that no analytic F_2 -invariant set $A \subset X$ cuts out a stationary-costationary piece.

Proof. Let x_{α} be points such that the sets $\operatorname{rng}(x_{\alpha}) \subset 2^{\omega}$ continuously increase with respect to inclusion. Let $A \subset X$ be an analytic F_2 -invariant set. Let $P = \operatorname{Coll}(\omega, \omega_1)$, let τ be a name for an element of X enumerating $\bigcup_{\alpha} \operatorname{rng}(x_{\alpha})$ and let p decide the statement $\tau \in \dot{A}$.

If $p \Vdash \tau \in \dot{A}$ then $\{\alpha : x_{\alpha} \in A\}$ contains a club, if $p \Vdash \tau \notin \dot{A}$ then $\{\alpha : x_{\alpha} \notin A\}$ contains a club.

I-sequences.

Definition. Let *E* be an analytic equivalence relation on *X*, *I* a σ -ideal on a cardinal κ . A sequence $\langle x_{\alpha} : \alpha \in \kappa \rangle$ is an *I*-sequence if for every analytic *E*-invariant set *A*, $\{\alpha : x_{\alpha} \in A\} \in$ *I* or $\{\alpha : x_{\alpha} \notin A\} \in I$.

Fact. Not having an *I*-sequence is a reducibility invariant. **Theorem.** Every unpinned equivalence relation has an *I*-sequence for I = the nonstationary ideal on ω_1 .

Proof. Let *E* be an unpinned equivalence relation on a space *X*. Let τ be a nontrivial pinned *P*-name for *E*, where $|P| = \aleph_1$.

Let $\langle M_{\alpha} : \alpha \in \omega_1 \rangle$ be an \in -tower of continuous elementary submodels. Let $x_{\alpha} \in X$ represent the unique *E*-class of τ/g where $g \subset M_{\alpha} \cap P$ is generic. $\langle x_{\alpha} : \alpha \in \omega_1 \rangle$ is an *I*-sequence.

Suppose that $A \subset X$ is analytic *E*-invariant and $p \Vdash \tau \in \dot{A}$. Whenever *N* is a countable elementary submodel, there is $\alpha \in \omega_1$ such that $P \cap N = P \cap M_{\alpha}$. Then $x_{\alpha} \in A$. **Theorem.** (MA) If J is an analytic P-ideal then $=_J$ has no I-sequence for a normal σ -ideal I.

Proof. Find a submeasure μ on ω such that $J = \{a \subset \omega : \lim_{n \to \infty} \mu(a \setminus n) = 0\}$. Let $d(x, y) = \lim_{n \to \infty} \mu(x \Delta y \setminus n)$ for $x, y \in X = \mathcal{P}(\omega)$. Work with I =the nonstationary ideal on ω_1 . Let $\langle x_{\alpha} : \alpha \in \omega_1 \rangle$ be a sequence.

Either there is $x \in X$ and $\varepsilon > 0$ such that $\{\alpha : d(x_{\alpha}, x) < \varepsilon\}$ is stationary costationary.

Or, there is a club C and $\varepsilon > 0$ such that $d(x_{\alpha}, x_{\beta}) > \varepsilon$ if $\alpha \neq \beta \in C$. Let $C = S_0 \cup S_1$ be a partition into stationary sets. Use the graph theorem to find a K_{σ} -set $A \subset X$ such that $d(x_{\alpha}, A) \geq \varepsilon$ if $\alpha \in S_0$ and $x_{\beta} \in A$ if $\beta \in S_1$.

Let
$$B = \{x \in X : d(x, A) \ge \varepsilon\}.$$

43

Theorem. (MA) If *E* is classifiable by countable structures, then *E* has no *I*-sequence for any normal $< \aleph_2$ -complete ideal.

Proof. Deal with $E = F_2$, I =nonstationary ideal on ω_2 . Let $\langle x_{\alpha} : \alpha \in \omega_2 \rangle$ be a sequence. Let $a = \{z \in 2^{\omega} : \{\alpha : z \in \operatorname{rng}(x_{\alpha})\}$ contains a club $\}$. The set $a \subset 2^{\omega}$ is countable.

Use normality to pick points $\langle z_{\alpha} : \alpha \in C \rangle$ such that $z_{\alpha} \in \operatorname{rng}(x_{\alpha}) \setminus \bigcup_{\beta \in \alpha} \operatorname{rng}(x_{\beta})$. Let $C = S_0 \cup S_1$ be a partition into stationary sets. Use the graph theorem to find a K_{σ} -set $A \subset 2^{\omega}$ such that $A \cap \operatorname{rng}(x_{\alpha}) = 0$ if $\alpha \in S_0$ and $A \cap \operatorname{rng}(x_{\alpha}) = \{z_{\alpha}\}$ if $\alpha \in S_1$.

Let $B = \{x \in X : \operatorname{rng}(x) \cap A = 0\}.$

Theorem. (MA) Let *E* be the mutual domination equivalence. *E* has an *I*-sequence where *I* is the nonstationary ideal on ω_2 restricted to $cof(\omega)$.

Proof. Let $\langle z_{\alpha} : \alpha \in \omega_2 \rangle$ be a modulo finite increasing sequence in ω^{ω} . If $cof(\alpha) = \omega$ then let $x_{\alpha} = \langle z_{\alpha_n} : n \in \omega \rangle$ for $\alpha_n \to \alpha$. $\langle x_{\alpha} : \alpha \in \omega_2 \cap cof(\omega) \rangle$ is an *I*-sequence.

If $A \subset X$ is an analytic *E*-invariant set, let $P = \text{Coll}(\omega, \omega_2)$, let τ be a *P*-name for $\langle z_{\alpha_n} : n \in \omega \rangle$ for $\alpha_n \to \omega_2^V$. If $p \Vdash \tau \in A$ then there is a club $C \subset \omega_2$ such that $\forall \alpha \in C \ x_\alpha \in A$.