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Borel reducibility.

Definition. Let E,F be analytic equivalence

relations on X,Y . Say that E ≤ F if there is a

Borel function h : X → Y which is a reduction

∀x0, x1 ∈ X x0 E x1 ↔ h(x0) F h(x1).

Example. E0 on 2ω, connecting x, y if x∆y is

finite.

Example. F2 on (2ω)ω, connecting x, y if rng(x) =

rng(y).

Example. EKσ on ωω connecting x, y if x − y
is bounded.
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Main challenge.

Proving that E is not reducible to F

Definition. A property Φ of equivalence re-

lations is a Borel reducibility invariant if Φ(F )

and E ≤ F implies Φ(E).

A dream. Finding reducibility invariants that

connect to higher stages of the cumulative

hierarchy, similar to Shelah’s classification of

models.
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Forcing.

Interpretations. Every Polish space and an-

alytic subset of a Polish space have canonical

interpretation in any generic extension. De-

noted by same letter.

Shoenfield absoluteness. Every Π1
2 sentence

is absolute between forcing extensions.

Example. If E,F are analytic equivalence re-

lations on X,Y and h : X → Y is a function,

the statement “h is a reduction” is Π1
2 and

therefore absolute.

Example. If E,F are Borel then the statement

E ≤ F is Π1
2 and therefore absolute.
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Pinned names and equivalence relations.

Definition. (Kanovei) Let E be an analytic

equivalence relation on X. A P -name τ for an

element of X is E-pinned if P × P  τl E τr.

Definition. τ is E-trivial if there is a point

x ∈ X such that P  τ E ẋ.

Definition. E is pinned if every E-pinned name

on every poset is trivial.

Main fact. “E is pinned” is a reducibility in-

variant.
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Example. F2 is not pinned.

Proof. Let P be the collapse of 2ω to ω. Let

A ⊂ 2ω be uncountable and let τ be a P -name

for an enumeration of A in the generic exten-

sion in ordertype ω. This is a nontrivial pinned

name.

Remark. All pinned names for F2 can be rep-

resented in this way.

Question. (Kechris) Is F2 minimal among the

unpinned equivalence relations?
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Example. EKσ is pinned.

Proof. Let P be a poset and τ a pinned EKσ-

name. There is a condition p ∈ P and a num-

ber n such that for every m ∈ ω the possibili-

ties for τ(m) are at most n far apart below p.

Let x ∈ ωω be a point defined by x(m) =the

least number k such that there is q ≤ p with

q  τ(m̌) = ǩ. Then p  τ EKσ x̌ and τ is

pinned.

Remark. EKσ is not the ≤-largest pinned equiv-

alence relation.

Question. Is there a-≤-largest pinned equiva-

lence relation?
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Other features of pinned equivalence

relations

Theorem. The following are equivalent for an

analytic equivalence relation E:

• E is unpinned;

• E is unpinned in all generic extensions;

• there is a nontrivial pinned name in every

poset collapsing ℵ1 to ℵ0.

If E is Borel on X then the set {A ⊂ X : E � A

is pinned} is Π1
1 on Σ1

1.
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A partial dichotomy.

Theorem. Let κ be a measurable cardinal.

Let W be the Solovay choiceless model derived

from κ. The following are equivalent for any

Borel equivalence relation E in W :

• E is unpinned;

• F2 ≤ E.

For analytic equivalence relation E, Eω1 ≤w E

must be added to the second item.
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Equivalence relation on names.

Definition. Let E be an equivalence relation

on a Polish space X. Let P,Q be posets and

τ, σ be P,Q-names for elements of X. Say that

〈P, τ〉 Ē 〈Q,α〉 if P ×Q  τ E σ.

Fact. Ē is an equivalence relation on pinned

names.

Question. How many Ē classes are there? On

which posets do they live?

10



The pinned cardinal

Definition. Let E be an analytic equivalence

relation on a Polish space X. The pinned car-

dinal κ(E) is the smallest κ such that every

pinned name τ has a Ē-equivalent on a poset

of size < κ.

• κ(E) can be equal to ∞;

• κ(E) = ℵ1 if E is pinned as a definitory

matter.

Fact. if E ≤ F then κ(E) ≤ κ(F ).
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Basic features of the pinned cardinal.

Bounds:

• κ(E) < iω1 if E is Borel;

• κ(E) <the first measurable if κ(E) <∞;

• κ(E) =∞ iff Eω1 is weakly reducible to E.

Operations:

• κ(E+) ≤ (2<κ(E))+;

• κ(
∏
I En) ≤ max(κ(En)) whenever I is a

Borel ideal on ω and =I is pinned.
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Examples.

• κ(Fα) = i+
α ;

• there are Borel equivalence relations Eα for

each countable α > 0 such that provably

κ(Eα) = ℵα;

• there is Borel E such that provably κ(E) =

(ℵℵ0
ω )+;

• there is analytic E such that under MA,

κ(E) = ℵ2 iff Chang’s conjecture holds;

Question. What is the pinned cardinal of the

measure equivalence?
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The ℵα example.

Definition. A Lω1ω-sentence φ is set-like if

there is a binary relation e such that φ proves

that e is extensional and well-founded.

Theorem. Let φ be set-like and Eφ be the

isomorphism of countable models of φ. Then

κ(Eφ) =the least cardinal κ such that φ has no

model of size κ.

Exercise. By induction on 0 6= α ∈ ω1 build

sentences φα such that the sentence has mod-

els of all sizes < ℵα but no model of size ℵα.

To φα, add a sentence saying “e is an exten-

sional well-founded relation of rank α” . This

does not change the cardinal, since |Vω+α| ≥
ℵα.
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The cardinal arithmetic example.

1. Find sentences φ, ψ such that φ has models

of size ≤ ℵω and ψ has models of size ≤ ℵ0. Let

θ be the sentence “A |= φ, B |= ψ, and C is a

collection of pairwise distinct maps from B to

A”. Add an extensional well-founded relation

of rank ≤ ω + ω + 2. Then κ(Eθ) = (ℵℵ0
ω )+.

2. Find sentences φ, ψ such that φ has models

of size ≤ ℵω+1 and ψ has models of size ≤ c.

Let ν = ψ ∨ φ, and add an extensional well-

founded relation of rank ≤ ω + ω + 2. Then

κ(Eν) = max(ℵω+1, c)
+.

3. Eθ is not Borel reducible to Eν since SCH

fails in a forcing extension and so κ(Eθ) <

κ(Eν) is consistent.
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Chang Conjecture Example.

Fact. Under MA, CC is equivalent to
(
ω2
ω2

)
→(

ω
ω

)1

ω
.

Let f : X ×X → ω be a universal Fσ-function.

Let A ⊂ Xω be the coanalytic set of y such that

rng(y)×rng(y) contains no infinite rectangle on

which f is constant. Let E be (F2 � A)∪(Ã×Ã).

This is an analytic equivalence relation.

If MA and CC holds then no pinned name τ can

have |rng(τ)|V ≥ ℵ2 and so κ(E) = ℵ2. If CC

fails, let g : ω2 × ω2 → ω be a counterexample

to the partition, let h : ω2 → X be such that

g = f ◦ h, and let τ be a Coll(ω, ω2)-name for

rng(h). So κ(E) > ℵ2.
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Pinned names and posets.

Fact. Nontrivial pinned names cannot live on

proper posets. They mostly live on collapse

posets.

Example. If τ is an F2-pinned name then there

is a set A ⊂ 2ω such that  rng(τ) = Ǎ.

Definition. Let E be an analytic equivalence

relation on X and τ an E-pinned name on some

P . κ(τ) is the unique cardinal κ if it exists such

that a poset Q carries an Ē-equivalent to τ if

and only if Q collapses κ to ℵ0.

Definition. E is cardinalistic if κ(τ) exists for

every E-pinned name τ .
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Examples of cardinalistic relations.

Theorem. Every orbit equivalence relation is

cardinalistic.

Theorem. The cardinalistic property is pre-

served under Friedman–Stanley jump, product

modulo an ideal J such that =J is pinned.

Fact. To be cardinalistic is a reducibility in-

variant.

18



Nonexamples of cardinalistic relations.

Definition. The mutual domination equiva-

lence relation E on X = (ωω)ω connects points

x, y if for every n there is m such that x(n)

is modulo finite dominated by y(m) and vice

versa.

Theorem. If there is a modulo finite increas-

ing ω2-sequence of points in ωω, then E is not

cardinalistic.

Proof. Let 〈zα : α ∈ ω2〉 be the increasing

sequence, let P be the Namba forcing adding

a cofinal sequence 〈αn : n ∈ ω〉, and let τ =

〈xαn : n ∈ ω〉.
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Hjorth’s turbulence.

Definition. Let E,F be analytic equivalence

relations on X,Y . E is F -ergodic if for every

Borel homomorphism h : X → Y , there is an

F -class with comeager h-preimage.

• turbulence applies to orbit equivalence re-

lations only–dynamic concept;

• turbulent equivalences are F -ergodic for ev-

ery F classifiable by countable structures;

• useful only in Baire category context.
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Turbulence generalized.

• independent of any dynamical context;

• compares certain generic extensions;

• ergodicity results;

• can be tailored to measure context etc.
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Motivating restatement of turbulence.

Definition. Let G act on X continuously. Let

PG be the Cohen poset on G, with generic ġ.

Let PX be the Cohen poset on X, with generic

ẋ.

Theorem. The following are equivalent:

1. the action is generically turbulent;

2. PG × PX  V [ẋ] ∩ V [ġ · ẋ] = V .
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Trimness and variations.

Definition. Let E be an analytic equivalence

relation on X. E is trim if for every pair V [G0], V [G1]

of generic extensions containing respective E-

related points x0, x1, if V [G0]∩V [G1] = V then

x0 E x for some x ∈ V .

Generalization I. P-trimness results from re-

stricting the extensions to posets with property

P.

Generalization II. ω-trimness results from con-

sidering infinitely many extensions.
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Connection with pinned property.

Definition. Let τ, σ be P,Q-names respec-

tively for elements of X. Say that 〈P, τ〉 Ê
〈Q, σ〉 is for every p ∈ P and every q ∈ Q there

are generic extensions V [G], V [H] such that

• p ∈ G ⊂ P , q ∈ H ⊂ Q;

• V [G] ∩ V [H] = 0;

• tau/G E σ/H.

Fact. Ê is an equivalence relation on trim

names, an equivalence is trim if there are non-

trivial trim names etc.
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Main properties.

• all variants of trimness are reducibility in-

variants;

• trimness and proper-trimness are absolute

between forcing extensions;

• trim is equivalent to the conjunction of

pinned and proper-trim;

• proper-trim is equivalent to Cohen-trim.
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Theorem. Let J be the ideal on 2<ω gener-

ated by branches. The relation =J is trim.

Proof. Let x0 ∈ V [G0], x1 ∈ V [G1] are =J-

related points. Assume V [G0]∩V [G1] = V and

x0 6=J x for every x ∈ V . Work for contradic-

tion.

Let T = {t ∈ 2<ω : x0 � [t] 6=J y for any y ∈
V }. This is a tree with no terminal nodes,

containing 0. It is in V [G0] ∩ V [G1], so in V .

Pick an infinite branch b ∈ V .

There is t ∈ b such that x0 � [t] = y0 � [t] off

b. Then x0 � [t] off b is in V , contradicting the

definition of T .
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Theorem. F2 is proper-trim.

Proof. Suppose that V [G0], V [G1] are proper

generic extensions containing F2-related points

x0, x1. Suppose that V [G0]∩V [G1] = V . Work

to find x ∈ V with x F2 x0.

For every z ∈ rng(x0) ∩ rng(x1), z ∈ V [G0] ∩
V [G1] = V . Thus, rng(x0) = rng(x1) is a sub-

set of V and an element of V .

Since V [G0] is proper, rng(x0) is countable in

V and so there is x ∈ V such that rng(x) =

rng(x0) and so x F2 x0 as required.
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Theorem. Let J be the ideal on A =
∏
n∈ω(n+

1) generated by graphs of functions. Then =J

is not Cohen-trim.

Proof. Let P be the poset of partial finite

functions from A to 2 ordered by inclusion,

adding ẋ ∈ 2A. Find generic filters G0, G1 ⊂ P

such that ẋ/G0 =J ẋ/G1 and V [G0] ∩ V [G1] =

0.

The poset Q adding the two generics consists

of conditions q = 〈p0, p1〉 where p0, p1 ∈ P with

the same domain such that {a ∈ dom(p0) :

p0(a) 6= p1(a)} is a graph of a partial function.

Key: if p  τ ⊂ Ord is not in V , then there are

extensions p0, p1 ≤ p which differ at just one

entry and an ordinal α such that p0  α̌ ∈ τ

and p1  α̌ /∈ τ .
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Ergodicity in category

Definition. Let E,F be analytic equivalence

relations on X,Y , and t a Polish topology on

X. Say that E is F -t-ergodic if for every Borel

homomorphism h : X → Y there is an F -class

with t-comeager preimage.

Example. E0 is id-t-ergodic where t is the

usual topology on 2ω.

Fact. Different topologies may give different

ergodicity properties.
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Theorem. If E is not proper-trim, then there

is a Polish topology t on X with meager classes

such that for every proper-trim F , E is F -t-

ergodic.

Proof. Let τ be a nontrivial trim name on the

Cohen poset. Let t be an associated Polish

topology on X (B is meager if P  τ /∈ B).

This topology works.

Suppose that h : X → Y is a Borel homomor-

phism of E to proper-trim F . Let G,H ⊂ P

be generic filters such that τ/G E τ/H and

V [G] ∩ V [H] = V . Then h(τ/G) F h(τ/H),

and proper-trimness of F shows that there is

y ∈ Y ∩ V such that h(τ/G) F y. Then h−1[y]F
is t-comeager.
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Corollaries.

Let J be the ideal on 2<ω generated by branches.

Corollary. If E is an orbit equivalence of a

turbulent action, then E is =J-ergodic. (E is

not proper-trim while E is.)

Corollary. If F is an equivalence classifiable

by countable structures then =J is F -ergodic.

(=J is not Cohen-ω-trim while F is.)
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Ergodicity in measure

Definition. Let E,F be analytic equivalence

relations on X,Y , let µ be a Borel probability

measure on X. Say that E is F -µ-ergodic if for

every Borel homomorphism h : X → Y there is

an F -class with preimage of full µ-mass.

Example. E0 is id-µ-ergodic for the usual

probability measure µ on 2ω.

Fact. Ergodicity in measure in Kσ equiva-

lence relations closely relates to concentration

of measure.
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Concentration of measure.

Definition. A sequence 〈Xn, dn, µn, εn, δn〉 has

concentration of measure if

• Xn is a (finite) set with metric dn and prob-

ability measure µn;

• εn, δn > 0 are real numbers tending to zero;

• for every set A ⊂ Xn of µn-mass > δn, the

εn-neighborhood of A has µn-mass > 1/2.

Fact. Many examples such as n-dimensional

spheres with the usual measure and metric.
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Theorem. Let 〈Xn, dn, µn, εn, δn〉 have concen-

tration of measure. Let

• X =
∏
nXn,µ =

∏
n µn;

• x E y if there is m such that for all n,

dn(x(n), y(n)) ≤ mδn.

Then E is F -µ-ergodic for every proper-trim

equivalence relation F .
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Proof. Add µ-random points x, y ∈ X such

that ∀n dn(x(n), y(n) ≤ δ and V [x] ∩ V [y] = V .

The poset consists of all pairs q = 〈Bq, sq, tq〉
where Bq ⊂ X is a Borel positive set, sq, tq ∈∏
n∈mXn, for all n ∈ m dn(sq(n), tq(n)) ≤ δ, and

Bq ⊂ [sq].

The ordering is defined by r ≤ q if Br ⊂ Bq, sq ⊂
srtq ⊂ tr, and Br · tr ⊂ Bq · tq. The names ẋ, ẏ

are defined as ẋ =
⋃
q∈G sq and ẏ =

⋃
q∈G tq.

The fact that V [x] ∩ V [y] = V uses the con-

centration of measure assumption.
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Corollary. E2 is F -µ-ergodic for every equiva-

lence relation F classifiable by countable struc-

tures.

Here, the equivalence relation E2 on X = 2ω

relates points x, y if
∑
{1/n+1 : x(n) 6= y(n)} <

∞. The measure µ is the usual measure on the

space 2ω.
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Separation properties of equivalence

relations.

Fact. (Martin–Solovay) If MA for κ holds and

A0, A1 ⊂ X are disjoint sets of size ≤ κ, then

there is a Kσ set B0 such that A0 ⊂ B0 and

A1 ∩B0 = 0.

Question. Does something similar hold for

quotient spaces X/E for various equivalence

relations E?

Fact. Possessing a separation property is a

reducibility invariant.
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A correct generalization of

Martin–Solovay.

Main tool. If MA σ-centered for κ holds, G ⊂
Xn is an Fσ set and A ⊂ X is G-free, then there

is a Kσ set B such that A ⊂ B and B is G-free.

Example. To separate disjoint sets A0, A1 ⊂
X, apply the tool to Y = X × 2, G connecting

distinct points with the same X coordinate,

and A = (A0 × {0}) ∪ (A1 × {1}).

Fact. In ZFC, there is a Gδ-graph G ⊂ X2 and

a set A ⊂ X of size ℵ1 which is G-free and every

analytic G-free set has countable intersection

with A.
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Where separation holds.

Theorem. If Martin’s Axiom for σ-centered

holds at κ, then the separation property holds

for EKσ at κ.

Proof. Let A0, A1 ⊂ ωω be EKσ-unrelated sets

of size ≤ κ. Apply the tool to Y = X × 2, G

connecting distinct points with EKσ-equivalent

X coordinates, and A = (A0×{0})∪(A1×{1}).

Question. Let J be an analytic P-ideal on ω.

Does separation hold for =J?
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Where separation fails.

Theorem. There is a sequence 〈xα : α ∈ ω1〉 of

pairwise F2-inequivalent points of X = (2ω)ω

such that no analytic F2-invariant set A ⊂ X

cuts out a stationary-costationary piece.

Proof. Let xα be points such that the sets

rng(xα) ⊂ 2ω continuously increase with re-

spect to inclusion. Let A ⊂ X be an ana-

lytic F2-invariant set. Let P = Coll(ω, ω1), let

τ be a name for an element of X enumerat-

ing
⋃
α rng(xα) and let p decide the statement

τ ∈ Ȧ.

If p  τ ∈ Ȧ then {α : xα ∈ A} contains a club,

if p  τ /∈ Ȧ then {α : xα /∈ A} contains a club.
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I-sequences.

Definition. Let E be an analytic equivalence

relation on X, I a σ-ideal on a cardinal κ. A

sequence 〈xα : α ∈ κ〉 is an I-sequence if for

every analytic E-invariant set A, {α : xα ∈ A} ∈
I or {α : xα /∈ A} ∈ I.

Fact. Not having an I-sequence is a reducibil-

ity invariant.
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Theorem. Every unpinned equivalence rela-

tion has an I-sequence for I =the nonstation-

ary ideal on ω1.

Proof. Let E be an unpinned equivalence rela-

tion on a space X. Let τ be a nontrivial pinned

P -name for E, where |P | = ℵ1.

Let 〈Mα : α ∈ ω1〉 be an ∈-tower of continuous

elementary submodels. Let xα ∈ X represent

the unique E-class of τ/g where g ⊂Mα ∩ P is

generic. 〈xα : α ∈ ω1〉 is an I-sequence.

Suppose that A ⊂ X is analytic E-invariant

and p  τ ∈ Ȧ. Whenever N is a countable

elementary submodel, there is α ∈ ω1 such that

P ∩N = P ∩Mα. Then xα ∈ A.
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Theorem. (MA) If J is an analytic P-ideal

then =J has no I-sequence for a normal σ-

ideal I.

Proof. Find a submeasure µ on ω such that

J = {a ⊂ ω : limn µ(a \ n) = 0}. Let d(x, y) =

limn µ(x∆y \ n) for x, y ∈ X = P(ω). Work

with I =the nonstationary ideal on ω1. Let

〈xα : α ∈ ω1〉 be a sequence.

Either there is x ∈ X and ε > 0 such that

{α : d(xα, x) < ε} is stationary costationary.

Or, there is a club C and ε > 0 such that

d(xα, xβ) > ε if α 6= β ∈ C. Let C = S0 ∪ S1

be a partition into stationary sets. Use the

graph theorem to find a Kσ-set A ⊂ X such

that d(xα, A) ≥ ε if α ∈ S0 and xβ ∈ A if β ∈ S1.

Let B = {x ∈ X : d(x,A) ≥ ε}.

43



Theorem. (MA) If E is classifiable by count-

able structures, then E has no I-sequence for

any normal < ℵ2-complete ideal.

Proof. Deal with E = F2, I =nonstationary

ideal on ω2. Let 〈xα : α ∈ ω2〉 be a sequence.

Let a = {z ∈ 2ω : {α : z ∈ rng(xα)} contains a

club}. The set a ⊂ 2ω is countable.

Use normality to pick points 〈zα : α ∈ C〉 such

that zα ∈ rng(xα) \
⋃
β∈α rng(xβ). Let C = S0 ∪

S1 be a partition into stationary sets. Use the

graph theorem to find a Kσ-set A ⊂ 2ω such

that A∩rng(xα) = 0 if α ∈ S0 and A∩rng(xα) =

{zα} if α ∈ S1.

Let B = {x ∈ X : rng(x) ∩A = 0}.
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Theorem. (MA) Let E be the mutual domi-

nation equivalence. E has an I-sequence where

I is the nonstationary ideal on ω2 restricted to

cof(ω).

Proof. Let 〈zα : α ∈ ω2〉 be a modulo finite

increasing sequence in ωω. If cof(α) = ω then

let xα = 〈zαn : n ∈ ω〉 for αn → α. 〈xα : α ∈
ω2 ∩ cof(ω)〉 is an I-sequence.

If A ⊂ X is an analytic E-invariant set, let P =

Coll(ω, ω2), let τ be a P -name for 〈zαn : n ∈ ω〉
for αn → ωV2 . If p  τ ∈ A then there is a club

C ⊂ ω2 such that ∀α ∈ C xα ∈ A.
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