Articles

  1. Bąk, Włodzimierz; Nadzieja, Tadeusz; Wróbel, Mateusz Models of the population playing the rock-paper-scissors game. Discrete Contin. Dyn. Syst. Ser. B 23 (2018), no. 1, 1–11.

  2. Knosalla, Piotr; Nadzieja, Tadeusz Stationary solutions of aerotaxis equations. Appl. Math. (Warsaw) 42 (2015), no. 2-3, 125–135.

  3. Bugdoł, Marcin; Nadzieja, Tadeusz A nonlocal problem describing spherical system of stars. Discrete Contin. Dyn. Syst. Ser. B 19 (2014), no. 8, 2417–2423.

  4. Nadzieja, Tadeusz Nicolaus Copernicus' studies in Kraków. Wiad. Mat. 48 (2012), no. 2, 325–329.

  5. Nadzieja, Tadeusz Interview with Stefan Jackowski, president of the Polish Mathematical Society. Wiad. Mat. 48 (2012), no. 2, 31–37.

  6. Bąk, Włodzimierz; Nadzieja, Tadeusz Evolution in a migrating population model. Appl. Math. (Warsaw) 39 (2012), no. 3, 305–313.

  7. Biler, Piotr; Nadzieja, Tadeusz An elementary approach to nonexistence of solutions of linear parabolic equations. Colloq. Math. 122 (2011), no. 1, 125–134.

  8. Biler, Piotr; Nadzieja, Tadeusz Nonexistence of solutions of the heat diffusion problem on a punctured disc. Monatsh. Math. 159 (2010), no. 4, 329–334.

  9. Dudek, Mirosław R.; Nadzieja, Tadeusz Age-structured population models with genetics. From genetics to mathematics, 149–172, Ser. Adv. Math. Appl. Sci., 79, World Sci. Publ., Hackensack, NJ, 2009.

  10. Głazek, Jerzy; Nadzieja, Tadeusz; Głazek, Andrzej; Głazek, Gregorz Kazimierz Głazek (1939–2005). (Polish) Wiadom. Mat. 44 (2008), 139–151.

  11. Kavallaris, N. I.; Nadzieja, T. On the blow-up of the non-local thermistor problem. Proc. Edinb. Math. Soc. (2) 50 (2007), no. 2, 389–409.

  12. Biler, Piotr; Karch, Grzegorz; Laurençot, Philippe; Nadzieja, Tadeusz The 8π-problem for radially symmetric solutions of a chemotaxis model in the plane. Math. Methods Appl. Sci. 29 (2006), no. 13, 1563–1583.

  13. Biler, Piotr; Karch, Grzegorz; Laurençot, Philippe; Nadzieja, Tadeusz The 8π-problem for radially symmetric solutions of a chemotaxis model in a disc. Topol. Methods Nonlinear Anal. 27 (2006), no. 1, 133–147.

  14. Biler, Piotr; Nadzieja, Tadeusz; Stańczy, Robert Nonisothermal systems of self-attracting Fermi-Dirac particles. Nonlocal elliptic and parabolic problems, 61–78, Banach Center Publ., 66, Polish Acad. Sci. Inst. Math., Warsaw, 2004.

  15. Biler, Piotr; Laurençot, Philippe; Nadzieja, Tadeusz On an evolution system describing self-gravitating Fermi-Dirac particles. Adv. Differential Equations 9 (2004), no. 5-6, 563–586.

  16. Biler, Piotr; Dolbeault, Jean; Esteban, Maria J.; Markowich, Peter A.; Nadzieja, Tadeusz Steady states for Streater's energy-transport models of self-gravitating particles. Transport in transition regimes (Minneapolis, MN, 2000), 37–56, IMA Vol. Math. Appl., 135, Springer, New York, 2004.

  17. Nadzieja, Tadeusz The Poisson equation. (Polish) Workshop on Partial Differential Equations (Polish), 67–99, Lect. Notes Nonlinear Anal., 4, Juliusz Schauder Cent. Nonlinear Stud., Toruń, 2003.

  18. Guerra, Ignacio; Nadzieja, Tadeusz Convergence to stationary solutions in a model of self-gravitating systems. Colloq. Math. 98 (2003), no. 1, 39–47.

  19. Biler, Piotr; Nadzieja, Tadeusz Global and exploding solutions in a model of self-gravitating systems. Rep. Math. Phys. 52 (2003), no. 2, 205–225.

  20. Biler, Piotr; Nadzieja, Tadeusz Structure of steady states for Streater's energy-transport models of gravitating particles. Topol. Methods Nonlinear Anal. 19 (2002), no. 2, 283–301.

  21. Nadzieja, Tadeusz A note on nonlocal equations in mathematical physics. Disordered and complex systems (London, 2000), 255–259, AIP Conf. Proc., 553, Amer. Inst. Phys., Melville, NY, 2001.

  22. Nadzieja, T.; Raczyński, A. Radially symmetric solutions of the Poisson-Boltzmann equation with a given energy. Appl. Math. (Warsaw) 27 (2000), no. 4, 465–473.

  23. Krzywicki, Andrzej; Nadzieja, Tadeusz Nonlocal elliptic problems. Evolution equations: existence, regularity and singularities (Warsaw, 1998), 147–152, Banach Center Publ., 52, Polish Acad. Sci. Inst. Math., Warsaw, 2000.

  24. Krzywicki, A.; Nadzieja, T. Steady states for a model of interacting particles. Appl. Math. Lett. 13 (2000), no. 3, 113–117.

  25. Biler, Piotr; Nadzieja, Tadeusz A nonlocal singular parabolic problem modelling gravitational interaction of particles. Adv. Differential Equations 3 (1998), no. 2, 177–197.

  26. Biler, Piotr; Krzywicki, Andrzej; Nadzieja, Tadeusz Self-interaction of Brownian particles coupled with thermodynamic processes. Rep. Math. Phys. 42 (1998), no. 3, 359–372.

  27. Nadzieja, T.; Raczyński, A. A singular radially symmetric problem in electrolytes theory. Appl. Math. (Warsaw) 25 (1998), no. 1, 101–112. (Reviewer: J. W. Jerome)

  28. Biler, Piotr; Nadzieja, Tadeusz; Raczyński, Andrzej Nonlinear singular parabolic equations. Reaction diffusion systems (Trieste, 1995), 21–36, Lecture Notes in Pure and Appl. Math., 194, Dekker, New York, 1998.

  29. Biler, Piotr; Nadzieja, Tadeusz Nonlocal parabolic problems in statistical mechanics. Proceedings of the Second World Congress of Nonlinear Analysts, Part 8 (Athens, 1996). Nonlinear Anal. 30 (1997), no. 8, 5343–5350.

  30. Biler, Piotr; Nadzieja, Tadeusz A singular problem in electrolytes theory. Math. Methods Appl. Sci. 20 (1997), no. 9, 767–782.

  31. Nadzieja, Tadeusz The individual ergodic theorem from a topological point of view. (Polish) Wiadom. Mat. 32 (1996), 27–36.

  32. Biler, P.; Nadzieja, T. Growth and accretion of mass in an astrophysical model. II. Appl. Math. (Warsaw) 23 (1995), no. 3, 351–361.

  33. Nadzieja, T. A model of a radially symmetric cloud of self-attracting particles. Appl. Math. (Warsaw) 23 (1995), no. 2, 169–178.

  34. Biler, Piotr; Hebisch, Waldemar; Nadzieja, Tadeusz The Debye system: existence and large time behavior of solutions. Nonlinear Anal. 23 (1994), no. 9, 1189–1209.

  35. Biler, Piotr; Hilhorst, Danielle; Nadzieja, Tadeusz Existence and nonexistence of solutions for a model of gravitational interaction of particles. II. Colloq. Math. 67 (1994), no. 2, 297–308.

  36. Biler, Piotr; Nadzieja, Tadeusz Existence and nonexistence of solutions for a model of gravitational interaction of particles. I. Colloq. Math. 66 (1994), no. 2, 319–334.

  37. Biler, Piotr; Nadzieja, Tadeusz A class of nonlocal parabolic problems occurring in statistical mechanics. Colloq. Math. 66 (1993), no. 1, 131–145.

  38. Krzywicki, A.; Nadzieja, T. A note on the Poisson-Boltzmann equation. Zastos. Mat. 21 (1993), no. 4, 591–595.

  39. Biler, Piotr; Nadzieja, Tadeusz Problems and examples in differential equations. Monographs and Textbooks in Pure and Applied Mathematics, 164. Marcel Dekker, Inc., New York, 1992. x+244 pp. ISBN: 0-8247-8637-8

  40. Krzywicki, A.; Nadzieja, T. A nonstationary problem in the theory of electrolytes. Quart. Appl. Math. 50 (1992), no. 1, 105–107.

  41. Nadzieja, Tadek Shadowing lemma for family of ϵ-trajectories. Arch. Math. (Brno) 27A (1991), 65–77.

  42. Krzywicki, A.; Nadzieja, T. Some results concerning the Poisson-Boltzmann equation. Zastos. Mat. 21 (1991), no. 2, 265–272.

  43. Krzywicki, A.; Nadzieja, T. Poisson-Boltzmann equation in R3. Ann. Polon. Math. 54 (1991), no. 2, 125–134.

  44. Krzywicki, A.; Nadzieja, T. Radially symmetric Poisson-Boltzmann equation in a domain expanding to infinity. Math. Methods Appl. Sci. 12 (1990), no. 5, 405–412.

  45. Nadzieja, Tadek Construction of a smooth Lyapunov function for an asymptotically stable set. Czechoslovak Math. J. 40(115) (1990), no. 2, 195–199.

  46. Krzywicki, A.; Nadzieja, T. Radially symmetric solutions of the Poisson-Boltzmann equation. Math. Methods Appl. Sci. 11 (1989), no. 3, 403–408.

  47. Nadzieja, T.; Šiška, J. Existence of time averages from the topological point of view. Zastos. Mat. 20 (1988), no. 1, 103–110 (1989).

  48. Nadzieja, Tadeusz Attractors with positively Lyapunov stable trajectories. Proc. Amer. Math. Soc. 86 (1982), no. 1, 87–90.

  49. Nadzieja, Tadeusz Flows on open manifolds with positively Lagrange stable trajectories. J. Differential Equations 41 (1981), no. 3, 313–319.

  50. Nadzieja, T. A remark on vector fields on open manifolds. Dynamical systems, Vol. II—Warsaw, pp. 315–322. Astérisque, No. 50, Soc. Math. France, Paris, 1977.