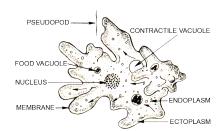
Zad. 1 (Amoeba forcing)

• Let $\varepsilon > 0$. Show that the poset

 $\mathbb{A}_{\varepsilon} = \{ U \subseteq \mathbb{R} \colon \lambda(U) < \varepsilon, U \text{ - open} \}$

ordered by \supseteq is ccc. (Hint: consider an uncountable family $\mathcal{R} \subseteq \mathbb{A}_{\varepsilon}$. For each $R \in \mathcal{R}$ fix a finite union of rational intervals (i.e. intervals with rational endpoints) $R' \subseteq R$ such that $\lambda(R - R') < \varepsilon - \lambda(R)$. Use the fact that there are only countably many such unions.)

- Show that if $N \in \mathcal{N}$, then $D_N = \{U \in \mathbb{A}_{\varepsilon} \colon N \subseteq U\}$ is dense in \mathbb{A}_{ε} .
- Show that if G is generic over \mathbb{A}_{ε} , then $\lambda(\bigcup G) \leq \varepsilon$.
- Conclude that MA implies that add(N) = c (and so that all coefficients in Cichon's diagram equal c).



Zad. 2 Let \mathbb{M} be the following ideal on \mathbb{R}^2 :

$$\mathbb{M} = \{ M \subseteq \mathbb{R}^2 \colon \exists B \in \text{Borel}(\mathbb{R}^2) \ M \subseteq B \text{ and } \forall x \in \mathbb{R} \ \lambda(B_x) = 0 \}.$$

What you can say about non and cov for this ideal? About add (\cancel{z}) ?

Zad. 3 A set $L \subseteq \mathbb{R}$ (of size \mathfrak{c}) is called *generalized Luzin set*, if $|L \cap M| < \mathfrak{c}$ for each $M \in \mathcal{M}$. Show that if $\operatorname{add}(\mathcal{M}) = \mathfrak{c}$, then there is a Luzin set.

Zad. 4 (Erdosa-Ulama theorem.) Show that if $add(\mathcal{N}) = cof(\mathcal{N})$, then there is a bijection $f: \mathbb{R} \to \mathbb{R}$ such that $f(A) \in \mathcal{M} \iff A \in \mathcal{N}$.

Hint: Consider an increasing base $(N_{\alpha})_{\alpha < \kappa}$ of the ideal \mathcal{N} and an increasing base $(M_{\alpha})_{\alpha < \kappa}$ of the ideal \mathcal{M} (where $\kappa = \operatorname{add}(\mathcal{N})$). Assume that $N_0 \cup M_0 = \mathbb{R}$ and $N_0 \cap M_0 = \emptyset$ and that $|N_{\alpha+1} \setminus N_{\alpha}| = \mathfrak{c}$ (similarly for $(M_{\alpha})_{\alpha < \kappa}$). Define the bijection on $N_{\alpha+1} \setminus N_{\alpha}$...

Zad. 5 We say that $(x, (I_n))$ is a *chopped real* if $x \in \omega^{\omega}$ and (I_n) is an interval partition of ω . Say that a real $y \in \omega^{\omega}$ matches $(x, (I_n))$ if there are infinitely many *n*'s such that $y|_{I_n} = x|_{I_n}$. Show that $M\mathcal{M}$ iff there is $(x, (I_n))$ such that no $y \in M$ matches $(x, (I_n))$.

Zad. 6 Consider the following orderings: 1, ω , ω_1 , $\omega \times \omega_1$, $[\omega_1]^{<\omega}$. What are the Tukey relations between those partial orders? Can you find a partial order of size at most ω_1 which is not Tukey equivalent to any of them? (\mathbb{P} is Tukey equivalent to \mathbb{Q} iff \mathbb{P} is Tukey below \mathbb{Q} and \mathbb{Q} is Tukey below \mathbb{P}).

Pbn http://www.math.uni.wroc.pl/~pborod/dydaktyka