Zad. 1 Define the almost disjointness number **a** by

 $\mathfrak{a} = \min\{|\mathcal{A}| : \mathcal{A} \text{ is infinite maximal almost disjoint family}\}.$

Show that $\mathfrak{b} \leq \mathfrak{a}$. Hint: consider \mathcal{A} - almost disjoint family of size less than \mathfrak{b} on $\omega \times \omega$ and suppose that it contains all the sets of the form $\{n\} \times \omega$.

Zad. 2 What is the topological interpretation of \mathfrak{a} ?

Zad. 3 We say that $S \subseteq \omega$ splits $N \subseteq \omega$ if both $S \cap A$ and $A \setminus S$ are infinite. Define the *splitting number*

 $\mathfrak{s} = \min\{|\mathcal{A}|: \text{ every } N \subseteq \omega \text{ is split by a member of } \mathcal{A}\}.$

Show that \mathfrak{s} is the minimal family of bounded sequences of real numbers such that for every infinite $Y \subseteq \omega$ at least one of those sequences does not converge on Y.

Zad. 4 Show that \mathfrak{s} is the minimal κ such that $\{0,1\}^{\kappa}$ is sequentially compact (i.e. every sequence has a convergent subsequence).

Zad. 5 Show that if $X \subseteq \{0, 1\}^{\omega}$ is such that $|X| < \mathfrak{s}$, then $\lambda(X) = 0$, where λ is the standard (Lebesgue) measure on $\{0, 1\}^{\mathbb{N}}$.

Zad. 6 Show directly (without using $\mathfrak{p} \leq \mathfrak{a}$) that $\mathsf{MA}(\omega_1)$ implies $\mathfrak{a} > \omega_1$.

Zad. 7 Assume $\mathsf{MA}(\kappa)$. Let X be a Hausdorff space such that every family of pairwise disjoint open sets is countable. Let $\{U_{\alpha} : \alpha < \kappa\}$ be a family of dense open subsets of X. Show that $\bigcap_{\alpha < \kappa} U_{\alpha} \neq \emptyset$. Notice that this is a generalization of Baire theorem.

Zad. 8 Consider the following version of Martin's Axiom: for every \mathbb{P} - **countable** partially ordered set, for every family of κ many dense sets in \mathbb{P} , there is a filter intersecting all of them. Show that this version implies that $\mathfrak{d} = \mathfrak{c}$. Hint: consider

 $\mathbb{P} = \{ f \colon f - \text{ function}, \operatorname{dom}(f) \in [\omega]^{<\omega}, \operatorname{rng}(f) \subseteq \omega \}$

ordered by " \supseteq ".

Zad. 9 Show that \mathfrak{b} is the minimal number κ such that there is no gap of type (ω, κ) . What is the topological interpretation of this fact?

Pbn

http://www.math.uni.wroc.pl/~pborod/dydaktyka