Applications of infinitary combinatorics 3 2018

Stone spaces.

Zad. 1 Let \mathfrak{A} and \mathfrak{B} be Boolean algebras and let $K = \operatorname{St}(\mathfrak{A})$ and $L = \operatorname{St}(\mathfrak{B})$. Show that

- \mathfrak{A} can be embedded in \mathfrak{B} (by a Boolean monomorphism) if and only if there is a continuous surjection $f: L \to K$.
- K can be embedded in L (by an injective homeomorphism) if and only if there is a Boolean epimorphism $h: \mathfrak{B} \to \mathfrak{A}$.

Zad. 2 Let K be a compact zerodimensional space. Show that K is homeomorphic to St(Clop(K)).

Zad. 3 Let \mathfrak{A} be a Boolean algebra generated by an uncountable almost disjoint family \mathcal{A} and the family of finite sets. How does it Stone space look like? What is the difference with Mrówka space generated by \mathcal{A} ?

Zad. 4 What is $St(\mathfrak{A})$ if \mathfrak{A} is a Boolean algebra generated by \mathcal{A} and the family of finite sets where:

- \mathcal{A} is a tower?
- \mathcal{A} is a gap?
- \mathcal{A} is a density filter?

Zad. 5 Consider a Boolean algebra \mathfrak{A} of subsets of [0, 1] generated by sets of the form [0, a), where $a \in [0, 1]$. What is the Stone space of \mathfrak{A} ?

Zad. 6 We say that a Boolean algebra \mathfrak{A} is σ -centered if $\mathfrak{A} \setminus \{0\} = \bigcup_{n \in \omega} \mathcal{A}_n$, where \mathcal{A}_n is centered for each n, i.e. every finite subfamily of \mathcal{A}_n has nonempty intersection. Show that \mathfrak{A} is σ -centered if and only if $\mathrm{St}(\mathfrak{A})$ is separable.

Zad. 7 Let K be a compact space, \mathcal{F} be a filter on ω and let (x_n) be a sequence in K. We say that $x \in K$ is a \mathcal{F} -limit of (x_n) $(\lim_{n \to \mathcal{F}} x_n = x)$ if for every open $U \ni x$ the set $\{n : x_n \in U\} \in \mathcal{F}$.

- Show that if \mathcal{F} is a filter of co-finite sets, then $\lim_{n\to\mathcal{F}} x_n = x$ if and only if $\lim_{n\to\infty} x_n = x$.
- What is $\lim_{n \in \mathcal{F}} x_n$ if \mathcal{F} is a principal ultrafiler?
- Show that if \mathcal{U} is an ultrafilter, then $\lim_{n \to \mathcal{U}} x_n$ exists for every (x_n) .

Zad. 8 Show that every bounded function $f: \omega \to \mathbb{R}$ has a continuous extension to $f': \beta \omega \to \mathbb{R}$. (Hint: use \mathcal{F} -limits.)

Zad. 9 Show that in $\beta \omega \setminus \omega$ every non-empty G_{δ} -set has a non-empty interior.

Zad. 10 Show that in $\beta \omega \setminus \omega$ every disjoint F_{σ} sets have disjoint closures.