Applications of infinitary combinatorics 2 2018

Filters and ultrafilters.

Zad. 1 Show that every filter can be extended to an ultrafilter.

Zad. 2 We say that a family \mathcal{A} generates a free filter if its closure under supersets and intersections is a free filter. Show that this is equivalent to the assertion that \mathcal{A} has strong finite intersection property (sfip), i.e. every intersection of finitely many elements of \mathcal{A} is infinite.

Zad. 3 Show that there are $2^{\mathfrak{c}}$ many ultrafilters on ω . Hint: consider an independent family $(A_{\alpha})_{\alpha<\mathfrak{c}}$ of subsets of ω . For $f:\mathfrak{c} \to \{0,1\}$ show that there is an ultrafilter \mathcal{F}_f such that $A_{\alpha} \in \mathcal{F}_f$ if and only if $f(\alpha) = 1$.

Zad. 4 Fix $n \in \omega$ and consider a family $\emptyset \notin C \subseteq \mathcal{P}(\omega)$ satisfying the condition $(\star)_n$: "for every partition of ω in less than n + 1 many sets the family C contains exactly one element of the partition". For which n the condition $(\star)_n$ is equivalent to "C is an ultrafilter"? Note: we do not assume here that C is a filter!

Zad. 5 If \mathcal{F} is a filter on ω , then P is a pseudo-intersection of \mathcal{F} if P is infinite and $P \subseteq^* F$ for every $F \in \mathcal{F}$.

- Show that every free filter generated by countably many elements does have a pseudo-intersection.
- Show that the density filter does not have a pseudo-intersection.

Zad. 6 A filter \mathcal{F} is a P-filter if for every family $\{F_n : n < \omega\} \subseteq \mathcal{F}$ there is $A \in \mathcal{F}$ such that $A \subseteq^* F_n$ for every $n < \omega$.

- Show that under Continuum Hypothesis there is a P-ultrafiler.
- Show that the density filter, i.e.

$$\{A \subseteq \omega \colon \lim \frac{A \cap \{0, \dots, n-1\}}{n} = 1\}$$

is a P-filter.

• Show that the density filter cannot be extended to a P-ultrafilter.

Zad. 7 (*) Is $\mathcal{P}(\omega)$ /Fin isomorphic to $\mathcal{P}(\omega_1)$ /Fin?

Pbn http://www.math.uni.wroc.pl/~pborod/dydaktyka