Zad. 1 Let (μ_n) be a sequence in the space of probability measures (on a compact space K). Prove that the following conditions are equivalent:

- μ_n is weak^{*} convergent to μ ,
- $\limsup_n \mu_n(F) \le \mu(F)$ for each closed $F \subseteq K$,
- $\liminf_n \mu_n(U) \ge \mu(U)$ for each open $F \subseteq K$,
- $\lim \mu_n(A) = \mu(A)$ for each borel $A \subseteq K$ such that $\mu(\overline{A} \setminus \text{Int}(A)) = 0$.

Zad. 2 Shot that if $\mathcal{A} \subseteq Bor(K)$ is such that

- \mathcal{A} is closed under finite intersections, and
- every open V is a union of elements of \mathcal{A} .

Then, if $\mu_n(A) \to \mu(A)$ for every $A \in \mathcal{A}$, then μ_n converges weak^{*} to μ .

Zad. 3 Use the previous exercises to show that if K is zerodimensional, then μ_n weak^{*} converges to μ if and only if $\mu_n(A) \to \mu(A)$ for every clopen A.

Zad. 4 Prove that if X is \mathcal{Z} -Frechet-Urysohn, then it is convexly Frechet-Urysohn.