Zad. 1 What is the complexity of the set of ill founded trees in $2^{<\omega}$ as a subset of \mathbb{T} , the family of all subtrees in $2^{<\omega}$ (seen as a Polish space in the way described on the lecture)?

Zad. 2 Let $N \subseteq 2^{\omega}$ be the set of all the sequences with infinitely many 1's. Show that the set

$$\{T \in \mathbb{T} \colon \exists x \in N \ x \in [T]\}$$

is analytic complete.

Zad. 3 Consider the space $X = (\omega \setminus \{0\})^{\omega}$ and let

 $L = \{x \in X \colon \exists k_0 < k_1 < \dots x(k_n) \text{ divides } x(k_{n+1}) \text{ for each } n.\}$

Show that L is analytic complete. Hint: show that the set of ill founded trees can be reduced to L.

Zad. 4 Show that if E is a Borel (analytic, F_{σ} , etc.) equivalence relation on X, then $[x]_E$ is Borel (analytic, F_{σ} , ...) for every x.

Zad. 5 Consider the language $\mathcal{L} = \{<\}$. Show that the set of all the countable \mathcal{L} -structures can be seen as a Polish space $X_{\mathcal{L}} = 2^{\omega \times \omega}$. Show that the isomorphism is an analytic relation on $X_{\mathcal{L}}$. What if we consider other relational languages?

Zad. 6 Consider the natural action \mathbb{Z} on \mathbb{R} and the induced orbit equivalence relation E (i.e. translations by integers). Show that E is Borel reducible to $Id(\mathbb{R})$.

Zad. 7 Consider the relation E_0 on the Cantor set (i.e. $xE_0y \iff x =^* y$). Show that it is not Borel reducible to Id([0,1])). Hint: suppose that $f: 2^{\omega} \to [0,1]$ is such a reduction. Consider an interval $I_n^k = [k/2^n, (k+1)/2^n)$ (where $k < 2^n$) and notice that $f^{-1}[I_n^k]$ is a Borel tail event and so one can apply Kolmogorov 0-1 law.

Zad. 8 Assume Σ_1^1 -determinacy. Show that every set $A \in \Sigma_1^1 \setminus \Pi_1^1$ is analytic complete. Hint: use the game which appears in the proof that every set from $\Sigma_{\alpha}^0 \setminus \Pi_{\alpha}^0$ is Σ_{α}^0 -complete.