next up previous
Next: 1. Rachunek zdań Up: Wstęp do matematyki Previous: Wstęp do matematyki

Wstęp

Niniejszy skrypt zawiera wykład wstępnych pojęć matematycznych. Przeznaczony jest dla studentów pierwszego roku studiów matematycznych. Celem tego wykładu jest zaznajomienie studenta z podstawowymi pojęciami używanymi we współczesnej matematyce. Chodzi też o wyrobienie nawyku precyzyjnego wyrażania matematycznych idei oraz o nauczenie rozumienia matematycznych tekstów.

Praktycznie nie wymagamy od czytelnika żadnego wstępnego przygotowania matematycznego. Wprowadzane pojęcia ilustrowane są przykładami z języka potocznego lub z elementarnej matematyki znanej czytelnikowi ze szkoły średniej.

Wykład obejmuje rachunek zdań i kwantyfikatorów, rachunek zbiorów, relacji i funkcji oraz elementy naiwnej teorii mnogości. Materiał podzielony jest na 15 rozdziałów odpowiadających 15 dwugodzinnym wykładom w semestrze.

Często dla większej zrozumiałości wywodu rezygnujemy z formalnych, teoriomnogościowych definicji na rzecz definicji bardziej intuicyjnych. Przykładowo w rachunku zdań formuły zdaniowe i tautologie wprowadzamy przez analogię ze znanymi czytelnikom ze szkoły średniej wyrażeniami i tożsamościami algebraicznymi. Podobnie postępujemy definiując formuły i tautologie rachunku kwantyfikatorów.

Pojęcie pary uporządkowanej wprowadzamy aksjomatycznie, wspominamy też o definicji teoriomnogościowej. Badanie relacji ograniczamy do najważniejszych przykładów: relacji porządku i relacji równoważności. Definiując pojęcie funkcji staramy się też uniknąć formalizmu teoriomnogościowego (który zaciemnia jego istotę).

Ostatnie rozdziały poświęcone są pojęciom liczb kardynalnych i liczb porządkowych. Również tutaj ograniczamy się do podejścia naiwnego, starając się jednak zachować matematyczną ścisłość i poprawność, jak również przekazać istotę omawianych zagadnień. Zainteresowany czytelnik proszony jest o zapoznanie się z formalną aksjomatyczną teorią mnogości.


next up previous
Next: 1. Rachunek zdań Up: Wstęp do matematyki Previous: Wstęp do matematyki
Ludomir Newelski 2005-09-22