
 

LESSON: SAMPLING DISTRIBUTION OF �̅� 

This lesson includes an overview of the subject, instructor notes, and example exercises using 

Minitab. 

Sampling Distribution of �̅� 

Lesson Overview 

The sampling distribution of the sample mean, denoted �̅�, is a concept that is required to 

understand and relate to introductory statistical inference, which includes hypothesis testing and 

confidence intervals. If repeated random samples are chosen from the same population, the 

values of the sample mean, denoted 𝑥,̅ will vary from sample to sample. Note that these samples 

are typically drawn without replacement where each observation can be sampled from the 

population only once. The sampling distribution �̅� is the distribution of these sample mean �̅� 

values, for a large number of samples. 

If the original population has a normal distribution with mean μ and standard deviation , then 

plotting the sample means for the simple random samples (SRS), each containing n 

observations, will produce a sampling distribution that also follows a normal distribution. If the 

original population does not have a normal distribution, but each SRS has a large n (where most 

texts suggest n > 30), then plotting the sample means will produce a sampling distribution that 

has an approximate normal distribution. This result is called the Central Limit Theorem. 

Prerequisites 

This lesson helps to connect descriptive statistics, which is introduced in the Describing Data 

Numerically and Describing Data Graphically lessons, to inferential statistics. The Normal 

Distribution lesson is required to understand this lesson. Also, the Sampling lesson explains 

the concept of obtaining a simple random sample. 

Learning Targets 

This lesson teaches students: 



 �̅�

 To recognize that there is variability due to sampling—repeated random samples from 

the same population will produce variable results, such as variable �̅�’s. 

 About the concept of a sampling distribution of a sample mean. 

 That the sampling distribution of �̅� is normally distributed if the original population 

being sampled from is normally distributed. 

 The implication of the Central Limit Theorem. Namely, students will learn that the sampling 

distribution of �̅� is approximately normally distributed if the original population being 

sampled from is non-normal, given the sample size n is large. 

 That if the original population being sampled from has mean μ and standard deviation , 

then the sampling distribution of �̅� has mean 𝝁�̅� = 𝝁  𝐚𝐧𝐝  𝝈�̅� =
𝝈

√𝒏
. 

 To determine probabilities associated with �̅� using a standard normal probability table 

and Minitab. 

Time Required 

It will take the instructor 30 minutes in class to introduce the Sampling Distribution of �̅� lesson 

and go through exercises by hand and in Minitab to help students grasp the concept of the 

normal shape of �̅� and the Central Limit Theorem. We recommend starting the activity sheet in 

class so that students can ask the instructor questions while working on it. The exercises on the 

activity sheet will take 60 minutes, and can be used as homework or quiz problems. 

Materials Required 

 Minitab 17 or Minitab Express 

 Internet access for simulation and data-generating activities. 

Assessment 

The activity sheet contains exercises for students to assess their understanding of the learning 

targets for this lesson. 

Possible Extensions 

The instructor will be ready to proceed with the Population Mean Hypothesis Testing for 

Large Samples and Population Mean Confidence Intervals for Large Samples lessons after 

finishing this lesson. 

References 

Bunnies, Dragons and the ‘Normal’ World: https://www.youtube.com/watch?v=jvoxEYmQHNM 

https://www.youtube.com/watch?v=jvoxEYmQHNM
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Instructor Notes with Examples 

The Sampling Distribution of a Sample Mean 

 The sample mean �̅� is a statistic whose value is the average of sample data drawn from 

a population. 

 For random samples of size n taken from a given population, the random variable �̅� is 

the collection of these sample means, the �̅�’s. Like any random variable, �̅� has a 

probability distribution associated with it; i.e., shape, mean, standard deviation. 

 The probability distribution created by plotting sample means, the �̅�’s, is the sampling 

distribution of the mean �̅�.   

 The sampling distribution of �̅� depends on the: 

o distribution of the original population (e.g., normal, skewed, uniform, symmetric) 

o sample size n 

o method of sample selection 

Suppose we take numerous simple random samples of a given size n from a normal distribution 

with population mean μ and standard deviation . Then we compute the mean for each of those 

samples. Some of these sample means will be less than μ and some will be greater than it, thus 

giving us the sampling distribution. 

If we plot the sample means using a histogram, we will see that they are normally distributed, 

where the mean and standard deviation of the sampling distribution �̅� are: 

𝜇�̅� = 𝜇  and  𝜎�̅� =
𝜎

√𝑛
 

 

Example 1  

Consider a pack of n = 4 batteries. The battery lifetime is normally distributed with a mean of 10 

hours and a standard deviation of 2 hours. 

Let X1, X2, X3, …, Xn be independent normally distributed random variables with mean µ and standard 

deviation σ. 

 The distribution of the sample mean �̅� is exactly normally distributed with mean μ and standard 

deviation 
𝜎

√𝑛
. 

The larger the sample size n, the closer the distribution will converge about the true population mean μ. 



 �̅�

(a) If we randomly select one battery from the pack, what is the probability that the lifetime of 

this battery is less than 9 hours? 

Let X represent the lifetime of one battery selected from the pack. Since X is normally 

distributed, we can determine its z-score and determine the desired probability with the 

standard normal table. 

𝑃(𝑋 < 9) = 𝑃 (
𝑋 − 10

2
<

9 − 10

2
) = 𝑃(𝑍 < −0.5) ≅ 𝟎. 𝟑𝟎𝟖𝟓𝟒 

(b) What is the probability that the average lifetime �̅� of a pack of four batteries is less than 9 

hours? For example, one battery could last 9.5 hours, another 8.2 hours, another 11.6 hours, etc. 

Let �̅� represent the average lifetime of the pack of 4 batteries. Since X is normally distributed, 

then �̅� is also normally distributed with mean μ = 10 and standard deviation 2/√4 = 1.  

𝑃(�̅� < 9) = 𝑃 (𝑍 <
9 − 10

1
) = 𝑃(𝑍 < −1) ≅ 𝟎. 𝟏𝟓𝟖𝟔𝟔 

The graph below shows the distributions of X and �̅� for n = 4, where X represents the battery 

lifetimes and �̅� represents the average lifetimes. 

You can visibly see the difference in the probabilities by looking at the area under the curve to 

the left of the value 9. The individual observations are more variable than the means, and 

therefore the probability for the individual battery lifetime problem above (0.30854) is greater 

than the probability for the average lifetime (0.15866). 
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The Central Limit Theorem 

Not all variables are normally distributed. In part, the normal distribution’s popularity is due to 

its role in the Central Limit Theorem (CLT). Before giving a theoretical definition of this 

theorem, the following cartoon clip does a good job of displaying the CLT and what happens to 

averages of random samples as the sample size increases. 

The video, Bunnies, Dragons and the ‘Normal’ World, is an animation that was displayed in the 

New York Times to illustrate the Central Limit Theorem: 

https://www.youtube.com/watch?v=jvoxEYmQHNM 

 The Central Limit Theorem is the heart of probability theory. 

 The theorem states that the sampling distribution of �̅� can be approximated by a normal 

distribution when the sample size n is “sufficiently large,” irrespective of the shape of 

the original population distribution. 

 As the sample size n increases, the corresponding distribution of the sample means will 

“converge” around the true population mean µ. 

The symbolic explanation of the Central Limit Theorem is: 

 

 

The activity sheet will use simulations to help students derive these facts on their own so that 

they better understand the Central Limit Theorem. Although easily stated, the CLT is difficult to 

understand without graphics of �̅� for increasing sample sizes n. 

The following example considers averaging non-normal random variables for increasing sample 

sizes. Histograms will be used to display the shape of the distribution of �̅�. 

 

Example 2 

Let X1 be a random variable representing the outcome of rolling a fair 6-sided dice. The random 

variable can take on the values x = 1, 2, 3, 4, 5, 6 with probability 1/6 for each. 

Let X1, X2, X3, …, Xn be independent non-normal random variables with identical distributions with 

mean μ and standard deviation . If n is “large” enough (n > 30 suggested in most texts), then: 

The distribution of the sample mean �̅� is approximately normally distributed with mean μ and 

standard deviation 
𝜎

√𝑛
. 

The larger the sample size n, the more normally distributed the sampling distribution will be and the 

closer the distribution will converge about the true population mean μ. 

 

https://www.youtube.com/watch?v=jvoxEYmQHNM


 �̅�

To graph the distribution of X1, we will use Minitab to sample 500 data points from the integer 

distribution x = 1, 2, 3, 4, 5, 6 with equally likely probabilities. 

Minitab 17  

1 Using a blank Minitab worksheet, choose Calc > Random Data > Integer. 

2 In Number of rows of data to generate, enter 500. 

3 In Store in column(s), enter C1. 

4 In Minimum value, enter 1. 

5 In Maximum value, enter 6. 

6 Click OK. 

 

Minitab Express 

1 Using a blank worksheet, open the generate random data dialog box. 

 Mac: Data > Generate Random Data 

 PC: DATA > Random Data 

2 In Number of columns to generate, enter 1. 

3 In Number of rows in each column, enter 500. 

4 From Distribution, select Integer. 

5 In Minimum value, enter 1. 

6 In Maximum value, enter 6. 

7 Click OK. 

 

Column C1 now contains 500 randomly sampled values with equally likely probabilities chosen 

from x = 1, 2, 3, 4, 5, 6. Take a look at the column to make sure the distribution of values makes 

sense – just imagine these are the outcomes from someone rolling a die 500 times. 

We can create a histogram for column C1 to see the shape of the distribution. We expect to see 

approximately the same heights for values x = 1, 2, 3, 4, 5, 6 around the value  
1

6
∗ 500 ≅ 83.3. 

Minitab 17 

1 Choose Graph > Histogram. 

2 Choose Simple, then click OK. 

3 In Graph variables, enter C1. 

4 Click OK. 

 

Minitab Express 

1 Open the histogram dialog box. 

 Mac: Graphs > Histogram > Simple 

 PC: GRAPHS > Histogram > Simple 
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2 In Variables, enter C1. 

3 Click OK. 

 

 

This graph is fairly flat with the value of 2 having a higher frequency than expected. This is not 

unusual for a random process, such as rolling a die. We can definitely see, though, that the 

distribution does not exhibit the shape of a normal curve. 

In order to examine the shape of the average �̅� of two die rolls, we’ll create another 500 die rolls 

the column C2 in Minitab. Its histogram is: 

 

The Sampling Distribution for �̅� when n = 2 and the initial distribution is discrete uniform for x 

= 1, 2, 3, 4, 5, 6. 

Before creating a histogram for the average of these two rolls, we need to use Minitab to calculate 

the average of columns C1 and C2. 

1 Name column C3 as “Average of 2 Dice Rolls.” 
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2 Open the dialog. 

 Minitab 17: Choose Calc > Calculator. For Store result in variable, enter C3. 

 Minitab Express Mac and PC:  Choose Data > Formula. 

3 For Expression, enter (C1 + C2) / 2. 

4 Click OK. 

Column “Average of 2 Dice Rolls” contains 500 averages of two dice. Take a look down the column 

to make sure the distribution of values makes sense. These are the outcomes from someone 

rolling two dice and averaging their values. Observing a 1 or a 6 as an average is the most unlikely 

value, though you may see about 13 or 14 of each. 

We will make a histogram for the column “Average of 2 Dice Rolls” to see the shape of the 

distribution. We expect the highest bin to be around the average 3.5 since 6 dice roll averages 

((1, 6); (2, 5); (3, 4); (4, 3); (5, 2); (6, 1)) yield 3.5. Minitab histogram plot instructions are given in 

Example 2 of this lesson. 

 

Facts about �̅� when n = 2 

 The mean of the distribution �̅� is the same as the mean of X1 or X2. 

 The standard deviation of �̅� is less than the standard deviation of X1 or X2. 

 The shape of �̅� is converging toward the mean 3.5 and is taking on more of a normal 

distribution shape. 

The Sampling Distribution for �̅� when n = 3 and the initial distribution is discrete uniform for 

x = 1, 2, 3, 4, 5, 6. 

Let’s average three random variables – X1, X2, and X3 – where each is the outcome from rolling a 

fair 6-sided die. In Minitab, make a new column of 500 die tosses, then average the 3 random 

variables in a new column as shown previously. Last, make a histogram of �̅� when n = 3. 
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Facts about �̅� when n = 3 

 The mean of the distribution �̅� is the same as the mean of X1, X2, X3, and �̅�2. 

 The standard deviation of �̅� is less than the standard deviation of X1, X2, X3, and �̅�2. 

 The shape of �̅� is converging toward the mean 3.5 and is taking on more of a normal 

distribution shape. 

Here are histograms for �̅� for n = 5, 10, and 30. 

 

The mean and standard deviation values for the histograms shown above are as follows: 
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To recap the Central Limit Theorem from earlier in this lesson: 

 

Although statisticians and texts suggest n to be at least 30 for �̅� to approach normality, you can 

see from the plots on this page that the histograms are displaying a normal shape for n < 30. 

The sample size required for convergence to normality depends on the shape of the original 

distribution. Fairly flat or symmetric distributions tend to have normal �̅� plots for smaller sample 

sizes n compared to distributions that are highly skewed. 

 

Advantages of Normally Distributed �̅�‘s 

If we can assume that a distribution, such as �̅�, is normally distributed and we know the original 

distribution’s mean and standard deviation, then we can determine probabilities for �̅� using a 

standard normal table or Minitab. In essence, we repeat the technique used in the Normal 

Distribution lesson, except that we replace the random variable X with its average �̅� for sample 

size n. 

Let X1, X2, X3, …, Xn be independent non-normal random variables with identical distributions with 

mean μ and standard deviation . If n is “large” enough (n > 30 suggested in most texts), then: 

The distribution of the sample mean �̅� is approximately normally distributed with mean μ and 

standard deviation 
𝜎

√𝑛
. 

The larger the sample size n, the more normally distributed the distribution will be and the closer the 

distribution will converge about the mean μ. 
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Example 3 

Let X1, X2, X3, …, X100 denote the weights of 100 independent and identically 

distributed bags of candy corn. If the mean weight of each bag is 1 lb. and its 

standard deviation is 0.05 lb., determine the probability that the average of 100 

bags weighs between 0.995 lb. and 1.01 lb.  

According to the Central Limit Theorem, the distribution for �̅� for n = 100 is approximately 

normal, regardless of the distribution of each Xi. 

Using the formulas that we verified in this lesson, the mean and standard deviation of �̅�, 

respectively, are 1 lb. and 0.05/√100 = 0.005 lb. Since �̅� is approximately normal, then we can 

use the standard normal table to compute the probability. Recall that Z represents a standard 

normal random variable. 

 

We can determine this probability in Minitab as well, as explained in the Normal Distribution 

lesson. 

 

 

Using the Standard Normal Distribution Table 

The graph below depicts how to interpret the standard normal distribution tables provided on 

the following pages. 
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