CALCULUS

PROBLEMS LIST 4

26.10.09

- (1) Prove the inequality: $2^k < (k+1)!$ for each natural $k \ge 2$.
- (2) Prove the Bernoulli's inequality: for x > -1 and any $n \in \mathbf{N}$

$$(1+x)^n \ge 1+nx.$$

(3) Show that for x > 0 and any $n \in \mathbf{N}$ we have

$$(1+x)^n > 1 + \frac{n(n-1)}{2}x^2.$$

(4) Prove, that for any $n \in \mathbf{N}$ the following inequalities hold

(a)
$$\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n} = 2^n$$

(b) $\sum_{\substack{k=1\\k-\text{odd}}}^n \binom{n}{k} = \sum_{\substack{k=0\\k-\text{even}}}^n \binom{n}{k}.$

(5) Show, that for any natural number n we have the inequality $\binom{2n}{n} < 4^n$.

- (6) Prove, that for any number $a \in \mathbf{R}$ or $a \in \mathbf{C}$ satisfying the condition |a| < 1 we have $\lim_{n \to \infty} a^n = 0.$ (7) Find the limits:

(a)
$$\lim_{n \to \infty} \left(1 + \frac{1}{n^2} \right)^n$$
, (b) $\lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n$.

- (8) Find the limits of sequences: (a) $a_n = \sqrt[n]{2^n + 3^n}$, (b) $a_n = \sqrt[n]{2^n + 3^n + 5^n}$.
- (9) For which real α does the limit

$$\lim_{n \to \infty} \sqrt[3]{n+n^{\alpha}} - \sqrt[3]{n}$$

exist? Find this limit for those α for which it exists.

- (10) Compute the limits: (10) Compute the limits: (a) $\lim_{n \to \infty} \frac{1+2+3+\dots+n}{n^2}$, (b) $\lim_{n \to \infty} \frac{1^2+2^2+3^2+\dots+n^2}{n^3}$. (11) Compute the limits of sequences:

(a)
$$a_n = \frac{\sin^2 n}{n}$$
, (b) $a_n = \sqrt[n]{\log n}$,
(c) $a_n = \frac{1}{n^2} \log \left(1 + \frac{(-1)^n}{n \to \infty} \right)$.

(12) Prove, that if $a_n \xrightarrow{n \to \infty} g$ then the sequence of absolute values $\{|a_n|\}$ is also convergent, and

$$\lim_{n \to \infty} |a_n| = |g|.$$

Show that the above theorem does not hold the other way around, that is find a sequence $\{a_n\}$ which is not convergent, even though $\{|a_n|\}$ does converge.

(13) Prove, that if $|a_n| \xrightarrow{n \to \infty} 0$ then $\{a_n\}$ also converges to 0. (14) Prove, that if sequences $\{a_n\}$ and $\{b_n\}$ satisfy $a_n \leq b_n$ and are convergent, then

$$\lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n$$

(15) The sequence a_n is given in the following way: $a_1 = 0, a_2 = 1$, and

$$a_{n+2} = \frac{a_n + a_{n+1}}{2}$$
, for $n = 1, 2, \dots$.

Show that

$$\lim_{n \to \infty} a_n = \frac{2}{3}$$

(16) Show that if $a_n \xrightarrow{n \to \infty} 0$ and the sequence $\{b_n\}$ is bounded, then $\lim_{n \to \infty} (a_n \cdot b_n) = 0.$

(17) Show that if $a_n > 0$ for all $n \in \mathbf{N}$ and $a_n \xrightarrow{n \to \infty} 0$ then

$$\lim_{n \to \infty} \frac{1}{a_n} = \infty$$

(improper limit).

(18) Given is a sequence $\{b_n\}$, about which it is known, that

$$\forall \epsilon > 0 \ \forall \ n \ge 10/\epsilon \quad |b_n + 2| < \epsilon.$$

Find M such that

 $\forall n \in \mathbf{N} \quad |b_n| < M,$

 n_1 such that

 $\forall n > n_1 \quad b_n < 0,$

 n_2 such that

$$\forall n \ge n_2 \quad b_n > -3,$$

and n_3 such that

$$\forall n \ge n_3 \quad |b_n - 2| > \frac{1}{10}.$$

(19) Let $a_n = \frac{\sqrt{n^2 + n}}{n}$ and $\epsilon = \frac{1}{100}$. Find $n_0 \in \mathbf{N}$ such, that for $n \ge n_0$ we have $|a_n - 1| < \epsilon$.